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A Mathematicallheoryof Communication

By C. E. SHANNON

INTRODUCTION

HE recentdevelopmentof variousmethodsof modulationsuch as PCM and PPM which exchange

bandwdth for signatto-noiseratio hasintensfied theinteres in ageneraktheoryof communcaton. A
bass for such atheoryis containedin theimportant papersof Nyquist! andHartley? onthis subject In the
presen paper we will extend the theory to include anumber of new factas, in particular the éfectof noise
in the channe] andthe savings posible dueto the statistical structureof the original mesageand dudo the
nature of the final destimtion of the information.

The fundamenrdl problem of communcaion is that of reproducng at one point either exacty or ap-
proximaiely a messge seleced at anoherpoint. Frequeniy the messgeshave meaning; thatis they refer
to or arecorrelatedaccordingto somesystemwith certainphysdcal or conceptuaéntities Thes semantic
aspect®f communicatiorareirrelevant to the engineeringproblem. The significantaspects thattheactual
mesageis oneselectedroma set of possiblemessagesThe systemmustbe designedo operatefor each
possible selectionnotjust theonewhichwill actuallybechognsincethisisunknovn atthetime of desgn.

If the numberof messgesin theset isfinite thenthis numberor any monobnic funcion o this number
canberegardedasa measureof the informationproducedwhenone messagés chosenfrom the set, all
choicesbeing equaly likely. As was pointed out by Hartley the mog natral choice is the logarthmic
function. Althoughthis definition mug be generalizecdconsderablywhenwe consder theinfluenceof the
statisticsof the mesage andwhenwe have a ontinuousrangeof mesages we will in all casesuse an
essetially logarithmic measue.

Thelogarthmic measuras moreconvenientfor variousrea®ns

1. It is practcaly moreuseful. Paramegrsof engineerngimporiancesuchas time, bandwdth, number
of relays, etc., terd to vary linearly with the logarithm of the number of possililities. For example,
addingonerelay to agroupdoubksthe numberof possible states of therelays. It addsl to thebas 2
logarthm of this number Doubling the time roughly squaresthe numberof possible messges or
doubksthe logarthm, etc.

2. It is nearerto our intuitive feeling as to the proper measue. This is closely relatedto (1) sincewein-
tuitively measuesertities by linearcomparisa with commaon standards. Onefeels, fa example, that
two punchedcards fould have twice the capacity ofonefor informationstorage,and two identical
chamels twice the capacity of one for transmitting information.

3. It is mathematicallymore sutable. Many of the limiting operations aresimple in termsof the loga-
rithm but would require clumsy restatemetin termsof the number of possililities.

The choice of alogarthmic bas mrregpondsto the choice of a unit for measiring informaton. If the
base 2 is usedthe resuting unts may be called binary digits, or more briefly bits, a word suggesed by
J.W. Tukey. A device with two stade positions, such as arelay or aflip-flop circuit, canstare one bit of
information.N suchdevicescanstoreN bits, sincethe total numberof possible statesis 2N andlog, 2N = N.
If the basel0is usedthe units maybe calleddecimaldigits. Since

log,M =log;oM/l0g;2
= 3.32log oM,
INyquig, H., “Certain FactorsAffecting Telegraph Speed, Bell SysemTedchnical Journal, April 1924, p.324; “Certain Topicsin

TelegraphTransnisson Theory” A.LE.E.Trans., v. 47, April 1928, p. 617.
2Hartley, R. V. L., “Transmissionof Information;” Bell SysemTechnical Journal, July 1928, p. 535.
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Fig. 1—Schemaic diagram of ageneal communtaion system.

adecimaldigitis about3% bits. A digit wheelon a desk computng machine hasten stable postionsand
thereforehasastoragecapacity oonedecimaldigit. In analyticalwork whereintegrationanddifferentiation
areinvolved theba e is sametimesusefu. The resuting urits of information will be callednatural units.
Changefrom thebas a to baseb merelyrequiresmultiplication by log, a.

By a coommunication system we will meana system of the type indicatedscrematicallyin Fig. 1. It
consistsof essetially five parts:

1.

2.

5.

An information sourcewhich producesamessgeor ssquenceof messgesto be communcaedto the
receving terminal. The messagenay be of varioustypes:(a) A sequencef | ettersas inatelegraph
of teletype system; (b) A single funcion o time f(t) asin radio or telephory; (c) A function o
time and othervariables asn blackandwhite television — herethe mesage may be thoughtof asa
function f(x,y,t) of two spacecoordinats and time, the lightintensty at point (x,y) and timet ona
pickuptubeplate;(d) Two or morefunctonsof time,say f(t), g(t), h(t) — thisisthecasein “three-
dimensonal’ soundtransnissonor if the system isintendedo serviceseveral individualchannesin
multiplex; (e) Severalfunctions of several variades— in color television the messag consistsof three
functonsf(x,y,t), g(x,y,t), h(x,y,t) definedin athree-dmensonalconinuum— we may also think
of these threefunctionsas componerd of a vecbor field defined in the region — similarly, several
black and white television sourceswould produce“mesages consgsting d a numberof funcions
of threevariales;(f) Various combinations alsooccu, for example in television with anasseiated
audp channel

A transmitter which operaés on the mesage in some way to producea signal suitable for trans
misson ower the channel In telephonythis operaton conssts merely of changhg soundpressire
into a proporionalelectical current In telegraphywe have an encodng operaton which produces
a sequencef dots dadhesandspaceson the channelcorregpondingto the messge. In a multiplex
PCM systemthe differentspeechfunctionsmustbe sampled,compressedguantizedand encoded,
andfinaly interleaved properl to condructthe signal Vocodersystems television and frequeng
modubtonare otherexamples of complex operatonsappled to themesageto obtain thesignal

. Thechannelis merelythe mediumusedto transmitthe signalfrom transmitterto recever. It maybe

apair of wires acoaxi cabk, abandof radio frequences, abeamof light, etc.

. Thereceiverordinarily performsthe inverse operationof thatdoneby thetrangnitter, reconsructing

the messgefrom thesignal

Thedestination is the persa (or thing) for whom the messag is interded.

We wish to condder certin generalproblemsinvolving communcaion systems To dothisit is first
necessaryo represett the various elemeits involved asmathtematicalertities, sutably idealizedfrom their



physcalcounerpars. We mayroughly classfy communcaionsystemsinto threemain caiegories: discrete,
continuousandmixed. By a discrete system we will meanonein which boththe mesage andthe signal
areasequencef discree symbols. A typical cag istelegraphywherethe mesageis a sequencef letters
andthesignala sequenceof dots dasesandspacesA continuoussystemis onein whichthemesageand
signal are both treakd asconinuousfunctions e.g., radio or television. A mixed systemis onein which
bothdiscreteand continuousvariablesappeare.g., PCM transnission of speech.

We first considerthe discretecase. This casehasapplicationsnot only in communicatiortheory but
als in thetheoryof computingmachinesthe desgn of telephoneaxchangesnd otherfields In addition
thediscreteca® formsafoundatiorfor the continuousandmixedcasesvhichwill betreatedn thesecond
half of thepaper

PART |: DISCRETE NOISELESSSYSTEMS

1. THE DISCRETE NOISELESSCHANNEL

Teletype and teleggraphy aretwo simge examgesof a discretechannel for transmitting information. Gen

erally, adiscretechamel will meana systemwhereby a sequenceof choicesfrom afinite setof elementary
symbolsS, ..., S, canbe transmittedfrom one point to another. Eachof the symbadls § is assumed to have

a certainduration in time t; seconds(not necesarily the samefor differentS, for exampk the dots and

dasesin telegraphy).lt is notrequiredthatall possible sequencesf the § be capabé of trangnisson on
the system; certainseqiencesonly may be allowed Thesewill be posside signals for the chamel. Thus
in telegraphysuppo® the symbolsare: (1) A dot, condsting o line dosure for a unit of time and thenline

openfor aunit of time; (2) A dad, conssting d threetime units of closureand oneunit open;(3) A letter

spaceconssting d, say, threeunits ofline open;(4) A word space of & units ofline open.We mightplace
therestrictionon allowable sequenceshatno spacegollow eachother(for if two letter spacesareadjacent,
it is identicalwith a word space). The questionwe now consideris how one canmeasurehe capacity of
such a channeto trangnit informaton.

In the teletype ca® whereall symbols are of the sameduraton, andany sequenceof the 32 symbols
is allowed the arsweris easy Eachsymbol represerits five hits of information. If the systemtrangnits n
symbolsper secondt is naturalto say thatthe channelhasa capacity of5n bits per £cond.This doesnot
mean tkat the teletype chamel will always be transmitting information at this rate— this is the maximum
possiblerateand whetheror nottheactualratereacheshis maximumdepend®n the sourceof information
which feeds the chamel, aswill appearlater

In the more gereralcasewith diff erernt lengths of symbols and constraints on the allowedsequences,we
male the following definition:

Definition: The capacity C of adiscree channelis givenby
C=Lim M

T—oo T

whereN(T) is the number of allowedsignals of duration T.

It is easilyseerthatin the teletype casethis reduces to the previous resit. It canbe shown that the limit
in quegion will exist as a finite numberin mog cases ointeres. Suppog dl sequenceof the symbols
Si,..., S aredlowed and these symbols have duratonsty,...,t,. Whatis the channelcapacity?If N(t)
repregnsthe numberof sequencesf duraiont we have

N(t) =Nt —t1) + Nt —t2) +---+ N(t —tp).

The total numberis equal to the sum of the numbersof sequenceendngin §,S,...,S, andtheseare
N(t—t1),N(t —t2),...,N(t —t,), respectiely. Accordingto a well-known resultin finite differencesN(t)
is thenasymptotic for larget to X§ whereXg is the largest realsdution of the characteristicequation:

XUgpX 4. pXx =1



andtherefore
C =logXo.

In casehere arerestrictins on allowedsequenceswe maystill oftenobtainadiff ererceequation of this
type andiind C from the characteristiequation.n thetelegraphycasementionecabove

N(t) = N(t — 2) + N(t — 4) + N(t — 5) + N(t — 7) + N(t — 8) + N(t — 10)

aswe seeby counting sequence®f symbolsaccordingto the last or next to the last symbol occurring.
HenceC is —loguo wherepg is the postive rootof 1 = u? + u* + p® + pu” + p8 + 0. Solving this we find
C=0.539.

A very generaltype of restrictionwhich may be placedon allowed sequencess the following: We
imagine anumberof possible statesas , ap, . .., am. For eachstateonly certainsymbolsfromthesetS, ..., S,
canbe transmitted(diff erert subsetsfor the differert states).When one of thesehasbeentransmittedthe
statechanges to a new state depending bah on the old state and the particular symbol transmitted The
telegraphca® is a simple exampk of this. Thereare two states depending onwhether or not a spacewas
the lastsymbal transmitted If s, then only adat or adashcanbe sert next and the statealways charges.
If nat, any symbol canbe transmittedand the statechargesif a spaceis sen, otherwiseit remairs the same.
Thecondiionscanbeindicaedin alineargraphas shown in Fig. 2. Thejuncion points corregpondto the
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Fig. 2—Graphtal represendtion d the constaints on telegraph symbok.

statesard the lines irdicatethe symbols possidein a stateand theresuting state. In Appendix 1 it is shown
thatif the conditionson allowed sequencesanbedesribedin thisformC will exist and canbe calcdated
in accordancevith thefollowing result:

Theoem1: Let bi(js) bethe duraton o thes!" symbol which is allowable in statei andleadsto statej.
Thenthe channelcapacityC is equalto logW whereW isthe largeg realrootof the determinantequaion:

(s)
ZW_bijs —5”‘ =0

S

wheredij = 1if i = j andis zerootherwise.
For exampk, in thetelegraphcas (Fig. 2) the determinantis:

-1 W-2+w=) | _
W=34+W-8) (W=24w-4—-1)|~

On expangonthis leadsto theequaton gvenabove for this cag.

2. THE DISCRETE SOURCE OF INFORMATION

We have seenthatundervery generakonditionsthelogarithmof thenumberof possible signals inadiscrete
chamel increasedinearlywith time. The capacity to transmitinformation canbe specifiedby giving this
rate of increag, the numberof bits per £condrequiredto specifythe particular signalused.

We now congderthe informaton source.How is an informaton sourceto bedesribedmathemaitcally,
andhow muchinformaionin hits per gcondis producedn a givensource? Thamain point atissie isthe
effectof statistical knowledgeaboutthe sourcein reduchgtherequred capady of the channe] by the use



of proper encoding o the information. In telegraphy, for exampe, the messagsto be trangnitted consist of
sequence®f letters. These sequenceshowever, are notcompktely random.In genera)they formsenences
ard have the statisticalstructure of, say English. The letterE occurs more frequently than Q, the sequence
TH more frequently than XP, etc. The eisterce of this gructure allows one to make asaving in time (or
channekapadiy) by properly encoding the messge sequencesnto signalsequencesThisis areadydone
to alimited extentin telegraphyby usng the shortest channekymbol, a dot, for the mos commonEnglish
letter E; while the infrequentetters, Q, X, Z arerepregntedby longersequencesf dots and dades This
ideais carriedstill further in certaincommercialcodes where commaon words and phrasesarerepresened
by four- or five-letter code groupswith a cmondderablesaving in averagetime. The standardizedyreeting
andanniversarytelegramsnow in use extendthisto the point of encodnga senenceor two into arelaively
shortsequencef numbers

We canthink of a discretesourceasgeneratinghe mesage, symbol by symbol. It will choo® succes
sive symbolsaccordingto certainprobabilitiesdependingjn general,on precedingchoicesaswell asthe
paricular symbolsin quesion. A phydcal system, or a mathematcal modelof a systemwhich produces
sucha sequence of symbals governedby a set of probabilities, is known asa stechasticprocess® We may
considera discretesource,thereforeto berepresentetly a stochastiqrocess.Conversely any stochastic
proceswhichproducesdiscree sequencef symbols choenfrom afinite set may beconsderedadiscree
saurce. This will include suchcasesas:

1. Naturalwrittenlanguagesuchas English, GermanChines.

2. Continuousinformaion sourcesthat have beenrenderedliscree by some quantzing process For
example, thequantizedspeecHrom a PCMtransmitteyor a quantizedelevision signal.

3. Mathematicalcasesvherewe merely define abstractlya stochasticprocesswhich generates se-
guenceof symbols. Thefollowing are examples ofthis last type of source.

(A) Suppo®we havefivelettersA, B, C, D, E whicharechoeneachwith probability.2, succesive
choicesbeing independentThis would leadto a sequencedf which the following is a typical
example.

BDCBCECCCADCBDDAAECEEA
ABBDAEECACEEBAEECBCEAD.

This was condructedwith the use of atable ofrandomnumbers®

(B) Usingthe samefive letterslet the probabilitiesbe .4, .1, .2, .2, .1respectiely, with successie
choicesindependentA typical mesagefrom this sourceisthen:
AAACDCBDCEAADADACEDA
EADCABEDADDCECAAAAAD.

(C) A morecompicatked structure is obtainedif succesive symbolsare not choenindependerhy
but their probabilitiesdependon precedingletters. In the simplestcaseof this type a choice
dependonly on the precedingetterand not on onesbeforethat. The statistical structurecan
thenbe described by a setof transtion probabilities p;(j), the probability thatletteri is followed
by letter j. Theindicesi andj rangeover all the possible symbols. A secondequialent way of
specifying the structureis to give the “digram” probabilities p(i, j), i.e.,therelaive frequeng of
thedigrami j. Theletter frequences p(i), (the probability of letteri), thetranstion probabilities

3See,for exanple, S. Chandraskhar “Stochasic Problens in Physics and Astronony,” Reviews of Modern Physics, v. 15,No. 1,
January1943, p. 1.
4Kendall andSmith, Tablesof RandomSamplingNumbes, Canbridge, 1939.



pi(j) and the digramprobabilities p(i, j) arerelatedby the following formulas:
p() = p(,0) =3 p(i,i) = 3 p(i)p;(i)
p(,J) = ri(i)pi(i) | |
;pi(j)zlzp(i)z p(,j) = 1.

I7J
As a specificexamplesuppo® therearethreelettersA, B, C with the probability tables

pi(])) i | p(i) p(i, j)

j j
A B C A B C
4 1 9 4 1
als 15 & B als OB
IR LI B I S L
Clz 5 1 Cl =z Cla 1 13

A typical mesagefrom this ourceis the following:

ABBABABABABABABBBABBBBBABABABABABBBACACAB
BABBBBABBABACBBBABA.

The next increas in complexity would involve trigramfrequenceés but no more. Thechoice of
aletterwould dependon the precedingwo lettersbut not on the messagdoeforethatpoint. A
set of trigramfrequencés p(i, j,k) or equivalently asetof transition probabilities p;j (k) would
berequred. Continuingin this way oneobtains success/ely morecompicatedstochasic pro-
cessesln thegeneraln-gramca® aset of n-gram probabilities p(i1,ip,...,in) or of trarsition
probabilities pi, i,,...i._4 (in) iS requiredto specify the statisticalstructure.

(D) Stochasic proceses can also be defined which producea text congsting of a sequenceof
“words” Suppos therearefive lettersA, B, C, D, E and 16“words’ in the languagewith
asseiatedprobabilities:

10A .16BEBE .11CABED .04DEB
.04ADEB .04BED .05CEED .15DEED
.O5ADEE .02BEED .08DAB .01EAB
.01BADD .05CA .04DAD .O5EE
Suppo® succesive “words’ are choenindependentlyandare separatedby a space. A typical

mesage mightbe:

DAB EEA BEBE DEED DEB ADEE ADEE EEDEB BEBE BEBE BEBEADEE BED DEED
DEED CEED ADEE A DEED DEEDBEBE CABED BEBE BED DAB DEED ADEB.

If all thewords are of finite lengththis processs equivalent to oneof the precedingtype, but
the descrigion may be simper in termsof the word structure and probabilities. We may also
generalizéhereandintroducetranstion probabilitiesbetweenwords etc.

Thes atificial languagesre useful in congructing smple problemsand examplesto illustrate vari-
ous posibilities. We canals approximateo a naturallanguageby meansof a series of simple artificial
languagesThe zero-ordepproximationis obtainedoy choosng all letterswith the sameprobability and
independently The first-orderapproximations obtainedby choosng succesive lettersindependentijut
eachletter having the same probability that it hasin the naturallanguagé€. Thus in the first-order ap-
proximation to English, E is chosen with probability .12 (its frequency in namal English) and W with
probability .02, bu thereis no influencebetweenadjacentettersand no tendeng to form the preferred

5 etter, digramandtrigram frequenciesare given in Secetand Urgent by FletcherPratt,Blue RibbonBooks 1939.Word frequen-
ciesare tahulatedin Relative Frequencyof English Speeb SoundsG. Dewey, Harvard University Pres, 1923.



digramssuchas TH, ED, etc. In the second-ordeepproximaion, digramstructureisintroduced. Atera
letteris chosenthe next oneis chosenin accordancevith the frequenciesvith which the various letters
follow thefirst one. This requiresa table of digram frequenaces p;(j). In the third-orderapproximaion,
trigramstructureis introduced.Eachletteris chosenwith probabilitieswhich dependn the precedingwo
letters.

3. THE SERIES OF APPROXIMATIONS TO ENGLISH

To give avisualideaof how this sries ofproceses approachesalanguagetypical sequencesn the gpprox-
imationsto English have beencongructed and aregivenbelow. In all casesve have assimeda 27-symbol
“alphabet; the 26 lettersanda space.

1. Zero-ordeapproximaion (symbolsindependerdandequiprobabg).

XFOML RXKHRJIFFJUJZLPWCFWKCYJ FFJEYVKCQSGHYDQRAMKBZAA CIBZL-
HJQD.

2. First-arder approximation (symbols independent but with frequenciesof English text).

OCRO HLI RGWR NMIELWIS BU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA
NAH BRL.

3. Second-ordeapproximaion (digramstructureasin English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TU-
COOWE AT TEASONARE FUSQOTIZIN ANDY TOBE SEACE CTISBE.

4. Third-orderapproximaion (trigramstructure asin English).

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONS-
TURES OF THE REPTAGIN ISREGOACTIONA OF CRE

5. First-arder word approximation. Ratherthan catinuewith tetragam,. .. , n-gramstructureit is easier
ard betterto jump at this point to word units. Herewords are chasen independently but with their
approprate frequences.

REPRESENTINGAND SPEEDILY ISAN GOOD APT OR COME CAN DIFFERENTNAT-
URAL HEREHETHEA IN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHES
THE LINE MESSAGEHAD BE THESE.

6. Second-ordeword approximation.Theword transtion probabilitiesare correctbut no furtherstruc-
ture isincluded.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISHWRITER THAT THE CHAR-
ACTEROFTHISPOINTIS THEREFORE ANOTHERMETHOD FORTHE LETTERS THAT
THE TIME OF WHO EVERTOLD THE PROBLEM FORAN UNEXPECTED.

Theresemblance tordinaryEnglishtext increaseguitenoticeablyat eachof theabove steps. Notehat
these sampleshave rea®dnablygoodstructureoutto abouttwice therangethatis taken into accounin their
congruction. Thusin (3) the statistical proces insuresrea®nabk text for two-letter sequencesbut four-
letter sequencefrom the sample canusualy befitted into goodsentences|n (6) ssquence®f four ormore
wordscaneadly beplacedin sentenceswithout unusial or strainedcongructions The particularsequence
of ten words“attackon anEnglish writer thatthecharacerof this’ isnotat al unreasnabk. It appearshen
thata sufficiently complex stochasticprocesswill give asatisfactay represetation of adiscretesaurce.

Thefirst two sampleswere condructedby the u® of a book of randomnumbersin conjunctionwith
(for exampk 2) a table of letter frequencgs. This method might have beenconinuedfor (3), (4) and (5),
sincedigram, trigramand word frequeny tables are available, but a simpler equivalent methodwas used.



To congruct (3) for example, oneopensa book atrandomandselects a letter at randomon the page. This
letter is recorded.The bookis then openedo another pageand onereadsuntl this letter is encounered.
The succeedindetteris thenrecorded.Turningto anothempagethis secondletteris sarchedor and the
succeedindetterrecordedgtc. A similar processwvasusedfor (4), (5) and(6). It would be interestingf
furtherapproximaionscould be condructed, bu thelaborinvovedbecomenormousat the next stage.

4, GRAPHICAL REPRESENTATION OF A MARKOFF PROCESS

Stochasic proceses of thetype desribedabove areknown mathemaitcaly as disrete Markoff processs
and have beenextersively studiedin the literature® The generalcasecanbe describedss follows: There
exist a finite numberof posible “states’ of asystem; S, S,...,S,. In addition there isa set of trarsition
probabilities; pi(j) the probability thatif the systemisin state$ it will next go to stateS;. To make this
Markoff processnto an informationsourcewe need onlyassumethataletteris producedor eachtransition
from onestateto another The stateswill correpondto the“resdueof influence”from precedingetters
The situation canbe represenedgraphically asshown in Figs. 3, 4and 5. The “states”are the junction

Fig. 3—A graph correspondig to the sourcein exampk B.

pointsin thegraphandtheprobabilitiesandlettersproducedor atransitionare given besdethecorrepond-
ing line. Figure3 is for theexampk B in Secion 2, while Fig. 4 correpondsto the exampk C. In Fig. 3

Fig. 4—A graph correspondig to the sourcein exampk C.

thereis only onestatesincesuccessie lettersareindependentln Fig. 4 thereare asmary statesasletters.
If atrigramexample werecongructed therewould be & most n? statescorreponding to the possible pairs
of lettersprecedinghe onebeingchosen.Figure5 is a graphfor the caseof word structurein exampleD.
HereS correpondsto the* space”symbol.

5. ERGODICAND MIXED SOURCES

As we have indicatedabove adiscretesourcefor our purposesanbe consideredo be representedhy a
Markoff process.Among the possille discreteMarkoff processeshere is a group with special properties
of significancein communcaion theory This gecial classcongsts of the “ergodic” proceses and we
shall call the correpondingsourcesergodicsources Althougha rigorousdefinitionof an ergodicprocesss
somewhatinvolved,thegeneraldeais smple. In anergodic processvery sequenceroducedy the process

8For a detailedtreatnent seeM. Fréchet,Méthodedesfonctionsarbitraires. Theorie desévenenentsen chaine dansle casd’un
nombe fini d’étatspossibles Paris GauthierVillars, 1938.



is the samein statistical propertes. Thusthe leter frequences, digramfrequences, etc., obtained from
particular sequences,will, as the lengths of the sequences ircrease approach definite limits independent
of the particuar sequence. Actually this is not true of every ssquence but the set for which it is false has
probabilityzero.Roughlythe emgodicpropertymeansstatisticalhomogeneity

All the exampks of artificial languagegjivenabove areergodic. This propery is relaedto the structure
of the mrreponding graph. If the graphhasthe following two propertes’ the correppondingproces will
beemgodic:

1. Thegraphdoesnotconsst of two isolatedpars A andB suchthatit isimpossibleto gofrom juncion
pointsin partA to junction pantsin partB alonglinesof the graph in the direction of arrowsard also
impossibleto gofrom juncionsin partB to juncionsin partA.

2. A closedseriesof lines in the graph with all arrows on the linespainting in the sameorientation will
be calleda*“circuit.” The“length” of a drcuit is the number of lines init. Thus inFig. 5seriesBEBES
isadrcuit of length 5. Thesecondpropery requredisthatthegreagés commondivisor ofthelenghs
of all circuits in the graph be one.

Fig. 5—A graph comrespondng to the sourcein exampk D.

If thefirstcondtionis satisfiedbut the secand oreviolatedby having the greatestomman divisor equal
tod > 1, the sequencebave acertin typeof periodic structure. Thevarioussequencedall i nto d different
classesvhich are statistically the sameapart from a shift of the origin (i.e., which letterin the seqienceis
calledletter1). By ashift of from O upto d — 1 any sequencecanbe made tatisticaly equvaent to ary
other. A smple example with d = 2 is the following: Thereare three possille lettersa,b,c. Lettera is
followedwith either b or ¢ with probabilities % and% respectiely. Eitherb or c is aways fdlowedby letter
a. Thusatypical sequences

abacacacabacababacac

Thistypeof situationis notof muchimportancefor ourwork.

If thefirst conditionisviolatedthegraphmay beseparatedntoaset of subgraph&achof which satidfies
thefirst condition. We will assmethatthe secondconditionis also satidfied for eachsubgraphWe havein
this cag whatmay becaled a “mixed” sourcemadeup of anumberof purecomponens. Thecomponers
correpondto the varioussubgraphslif L1, Lo, L3, ... arethecomponensourcesve maywrite

L=piL1+ pol2+ paLlz+---

"These ae redatenentsin terms of thegraphof conditionsgiven in Fréchet.



wherep; is the probability of the componensourcelL;.

Physicallythe situationrepresented this: Thereareseveraldifferentsourcesl, Ly, Ls,... which are
eachof homogeneoudatigical structure(i.e., they are egodic). We do notknow a priori which isto be
used, but oncethe sequencestarts in a given purecomponent, it continuesindefinitelyaccordingto the
statistical structure of thatcomponent

As an exampleone may take two of the processeslefinedabove andassumep; = .2 and p, = .8. A
sequencdrom the mixed source

L=.2L;+.8Ly

would be obtainedby choosngfirst L1 or Ly with probabilities .2 and .8 and after this choice generating a
sequencdrom whicheverwas chosen.

Exceptwhenthecontraryis satedwe shall assimea sourceto beergodic. This assmption enabksone
to idertify averagesalongasequencewith average®ver the ersemlbe of possilde sequences(the probability
of a discre@rcy being zerg. For exampe the relative frequency of the letter A in a particdar infinite
sequencewill be, with probability one, equal to its relative frequency in the ersemlbe of seqiences.

If B is the probability of statei andp;(j) the transtion probability to statej, thenfor the processo be
statinary it is clearthatthe P mug satisfy equilibriumconditions

P =3 Ppi(i)

In theergodicca it canbeshown thatwith ary starting conditionsthe probabilitiesP; (N) of beingin state
j afterN symbols, approachthe eguilib rium values asN — .

6. CHOICE, UNCERTAINTY AND ENTROPY

We have represened a discreteinformation source asa Markoff process.Can we define aquantity which
will measire,in some sense,how muchinformationis “produced’by suchaproces, or better atwhatrate
information is produced?

Suppos we have aset of possible eventswhose probabilitiesof occurrenceare p1, p2,..., pn. These
probabilities are known but that is all we know concerring which event will occur. Can we find a measue
of how much*“choice” is involvedin the selectionof theeventor of how uncertainve areof theoutcome?

If thereis sichameasuresayH (p1, pz, - - -, Pn), it isrea®nabkto requreof it the following propertes:

1. H should be continuousin the p;.

2. If all the p; areequal p; = % then H should be amonobnic increagng funcion o n. With equally
likely eventsthereis morechoice,or uncersinty, whentherearemore possible events

3. If a dhoice be brokendown into two succesive choices the original H should be the weighted sum
of the individualvaluesof H. The meanimy of thisis illustratedin Fig. 6. At the left we have three

1/2 s 1/2
1/3
2/3
s > 1/3
1/3>1/6

Fig. 6—Decomposition of a chaicefrom threepassililitie s.

possitilities p1 = 3, p2 = 2, ps = 3. Ontheright we first choo betweertwo possibilities eachwith
probability 1, andif the secand cccurs make arother choicewith probabilities 3, 3. The final restits
have the sameprobabilities as before. We require, in this pecialcase that

H(Z 3,8 =H(3:2) +3H(S, 3).

Thecoeﬁicient% is becausehis secondchoiceonly occurshalf thetime.
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In Appendk 2, thefollowingresut is established:
Theoem?2: Theonly H satisfying the threeabove assumptions is of the form:

n
H=—-K pilogpi
i; | |

whereK is apostive congant.

Thistheorem andtheassimptionsrequiedfor its proof,arein noway necesary for the preenttheory
It is given chiefly to lend a certainplausihility to someof our laterdefinitions. The realjustification of these
definitions, hawever, will resice in their implications.

Quartities of theform H=—3 pilog p; (thecongant K merel amounsto achoiceof aunit of measire)
play acentralrole in informationtheoryas measure®f information,choiceanduncertainty Theform of H
will berecognizedsthatof entrogy as definedin certainformulationsof statisical mechanicdwherep; is
the probability of a systembeing in cell i of its phasespaceH is then,for example, theH in Boltzmam'’s
famousH theoremWe shallcallH = — 5 pilog pi the entropy of the setof probabilities py,..., pn. If Xisa
charcevariable we will write H(x) for its entopy; thusx is notanargumentof afunction kut alabelfor a
number, to diff erertiateit from H(y) say, the entropy of the chancevariabley.

The entropy in the caseof two passililities with probabilities p andg = 1 — p, namely

H = —(plogp+qlogq)
is plottedin Fig. 7 asafunction of p.

1.0
o /] AN
.8

BITS

o 1 2 3 4 5 6 7 8 9 10
p

Fig. 7—Entropy in the case of two passililitie swith probabilities p and(1— p).

The quantity H hasa numberof interesing propertes which further sibgantiate it as a rea®nabk
measireof choiceor informaton.

1. H =0if andonly if al the p; but onearezero,this onehaving the value unity. Thusonly whenwe
arecertin of the outtcomedoesH vanish OtherwiseH is positive.

2. For agiven n, H is a maximum andequal to logn whenall the p; areequal(i.e., %). This is also
intuitively the most uncertainsituatian.

8See/for exanple, R. C. Tolman, Principlesof Statigical Medanics Oxford, Clarendon,1938.
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3. Suppogtherearetwo events, x andy, in question with mpossitilities for thefirstandn for thesecond.
Let p(i, j) bethe probability of thejoint occurenceof i for thefirstandj for thesecond.Theentropy of the
joint event is

Zp J)logp(i,

while

== p(i,] Ipr

l

p(i, ngp
I?J
It is easilyshown that
H(xy) <H(X)+H(y)

with equality only if the evertsareindependent (i.e., p(i, j) = p(i)p(j)). Theuncertinty of ajointeventis
lessthanor equalto thesum of theindividualuncertinties.

4. Any change toward equalization of the probabilities p1, p2,..., pn increase#l. Thusif p1 < p2 and
we increasep;, decreasingp, anequalamountso that p; and p; aremore nearly equal,thenH increases.
More generdly, if we performary “averaghg” operaion onthe p; of the form

Pi=>aip
J

wherey;ajj = yjaj = 1, andal aj > 0, thenH increasegexceptin the specialcasewherethis transfor
maion amounsto nomorethanapermuation o the p; with H of course remaning the same).

5. Suppogtherearetwo chancesvens x andy asin 3, not necesarily independentFor ary partcular
vauei thatx canassunethereis a conditional probability p;(j) thaty hasthevalue j. Thisisgivenby

pQ, j)
ZJ p(la J)
We definethecondtionalentropyofy, Hy(y) asthe average ofthe entropy of y for eachvalue of x, weighted
accordingo theprobability ofgettingthatparticularx. That is

pi(j) =

zp J)logpi(]

This quantity measueshow uncertainwe areof y onthe aseragewhenwe know x. Substituting the value of
pi(j) we obtain

zp 1) logp(i, +Zp bgzp
mw—<>

or
H(%,y) = H(X) +Hx(y).

The uncertairty (or entropy) of the joint event x,y is the uncertainty of x plus the uncertairty of y whenx is
known.
6. From 3 and 5we have

H(X) +H(y) > H(Xy) = H(X) + Hx(y).
Herce
H(y) > Hx(y).

Theuncertainty of yisnever increasdby knowledgeof x. It will bedecreasednlesskandy areindependent
events,in which caset isnotchanged.
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7. THE ENTROPY OF AN INFORMATION SOURCE

Considera discretesourceof thefinite statetypeconsideredbove. For eachpossiblestatei therewill be a
setof probabilities pj(j) of produchgthevarious posible symbols j. Thusthereis an entropy H; for each
state.The entropy of the sourcewill be definedas the average of theseH; weightedin accordancevith the
probability of occurenceof the statesn question:

H=>% RH;
= - Rpi(i)logpi(j)-
1)

This s the entropy of the sourceper ymbol of text. If the Markoff processs proceedinggt a definitetime
rate thereis also an entropy per £cond
H =Y fiH
2

wheref; isthe averagefrequeny (occurrenceper £cond)of statei. Clearly
H' = mH

wheremis the averagenumberof symbols producedper £cond.H or H' measiresthe anountof informa-
tion generatedy the sourceper ymbol or per £cond.If thelogarithmicbas is 2, they will repreentbits
per ymbolor per £cond.

If successve symbolsare independerthenH is simply — S pjlog pi wherep; is the probability of sym-
boli. Suppo®in this cag we condderalongmesage of N symbols. It will containwith high probability
aboutp; N occurrencesf thefirst symbol, poN occurrencesf thesecond etc. Hencethe probability ofthis

particularmesagewill beroughly
_ PN PN peN
P=p1 P h

or

logp=N7} pilogp
[

logp=—NH
. logl/p
H= N

H is thus approximatelythe logarithm of the reciprocal probability of atypicallongseqiencedividedby the
numberof symbolsin the sequence.The sameresut holdsfor any source. Stated moreprecsely we have
(seeAppendk 3):

Theoem3: Givenanye > 0 ands > 0, we canfind an Ny suchthatthe sequencesf ary lengthN > Ng
fall into two classes:

1. A setwhose total probability is lessthane.
2. Theremairder, all of whose members have probabilities satisfying the inequality

logp™?!
N

“H|<s.

. logp~?! .
In otherwordswe areamos certin to have gp very closeto H whenN is large.

A closelyrelatedresut dealswith the number of sequencesof various probabilities. Consider againthe
sequencef length N and let them be arrarged in order of decreasig probability. We define n(q) to be
the numberwe musttake from this set startingwith the most probableonein orderto accumulatea total
probability q for thosetaken.

13



Theoem4:

Lim 1297(@) _
N—oo

whenq doesnotequall or1.

We mayinterprefogn(q) asthe numberof bitsrequredto specifythe sequencavhenwe cmndderonly
logn(q)

the most probable sequenceswith atotal probability g. Then is the numberof bits per gmbolfor

the specficaion. Thetheoremsays that for largeN this will be independent of g andequalto H. The rate
of growth of the logarthm of the numberof rea®nabl probabk sequencess given by H, regardlessof our
interprettion o “rea®nably probabk!’ Dueto these resuts, which areproved in Appendk 3, it ispossible
forHr’r\]osI purpo®sto treatthe longsequencessthoughtherewerejus 27N of them,eachwith a probability
2-"N,
The next two theaemsshow that H andH’ canbe determired by limiting operations directly from

the statigics of the mesage sequenceswithout referencdo the statesandtranstion probabilitiesbetween
states.

Theoem5: Letp(B;) bethe probability of a sequenceB; of symbolsfrom thesource.Let
1
Gn=—-y Z p(Bi) log p(B;)

wherethesum is over all sequence®; containingN symbols. ThenGy is a monobnic decreagg funcion
ofN and
Lim Gy =H.
N— oo
Theoem6: Let p(B;,S;j) be the probability of seqence B; followed by symbd S; and pg;(Sj) =
P(Bi,S;j)/p(Bi) bethe wndtional probability of Sj afterB;. Let

Fv=— p(Bi,Sj)logps(S;)
;)

wherethe sum is over all blocksB; of N — 1 symbolsand ower all symbolsS;. Then Fy is a monobnic
decreasindgunctionof N,

Fn =NGy — (N—1)Gn_1,

1 N
GN =N Fn,
N nzl
FN S GN7

andLimy_e Fy = H.

Thesresutsarederivedin Appendk 3. They show thata series ofapproxmaionsto H canbeobtained
by congdering only the statistical structure of the sequencesxtending ower 1,2,...,N symbadls. Fy is the
beter approximaion. In factFy is the entropy of the NI orderapproximaion to the sourceof the type
discussed abowe. If thereareno statistical influencesextending over more thanN symbols, that isif the
conditionalprobability of the next symbolknowing theprecedingN — 1) is notchangedy aknowledgeof
ary beforethat, thenFy = H. Fy of cour®is the anditionalentropy of the next symbolwhenthe (N — 1)
precedingonesare known, while Gy is the entropy per ymbol of blocksof N symbals.

Theratio of the entropy of a sourceto the maximum value it could have while still restrictedo the same
symbolswill be calledits relative entropy. Thisisthemaximumcompresion possible whenwe encodeinto
the samealphabet. One minus the relative entropy is the redundancy Theredundang of ordinary English,
not consdering statistical structure over greaterdistancesthan abouteight letters, is roughly 50% This
meanghatwhenwe write English half of whatwe write is deerminedby the structure of the languageand
haff is choenfreely. Thefigure50% was found byseveral independenmethodswhich al gavereslltsin

14



this neighborhoodOne is by calculation o theentopy o theapproxmationsto English. A secondmetod
is to delete a certainfraction of the lettersfrom a sampe of English text and then let someane attemg to
regorethem. If they canberegoredwhen 50% aredeletdthe redundang mug be greaterthan50% A
third methoddepend®n cerain knowvn realltsin cryptography

Two extremesof redundang in English prose arerepregnted by Basic English and by JamesJoyce’s
book“FinneganswWake”. TheBasc English vocalularyislimited to 850wordsand the redundangis very
high. This isreflectedin the expansion that occurs whena passag is trarslatedinto BasicEnglish. Joyce
onthe other handenlargesthe vocalulary and is allegedto achieve a @mpresion of semantc conent

The redundang of a languageis related to the existence of crossword puzzes If the redundang is
zeroany sequenceof letters is a rea®nabk text in the language andny two-dimensonalarray of letters
formsacrossvord puzzk. If theredundangistoohighthe languageémposestoo mary condraintsfor large
crossvord puzzksto bepossible. A moredetailed analysis showsthatif we asamethe congraintsimposd
by the languagereof arather chaotc andrandomnature, large crossvord puzzksarejug possible when
theredundang is50% If theredundangis 33% three-dmensonalcrossword puzzes $ould be possible,
etc.

8. REPRESENTATION OF THE ENCODING AND DECODING OPERATIONS

We have yet to representmathematicallythe operationsperformedby the transmitterand recever in en-
codinganddecodingthe information. Either of the® will be calleda discretetranglucer Theinputto the
trangluceris a sequencef i nputsymbolsandits outputa sequencef outputsymbols Thetranslucermay
have aninternalmemoryso thatits outputdependsiot only onthepreentinputsymbolbut also onthe pad
history. We assimethat the internalmemoryisfinite, i.e.,thereexist a finite numbem of possible states of
the tranglucerandthatits outputis a funcion o the preentstate andthe preentinputsymbol. The next
statewill be asecand function of thesetwo quantities. Thus atranslucercanbe described by two functions:

Yn = f(Xn,an)
an+1 = g(%,an)

where

X is the n inputsymbol,

an is the stateof the translucerwhenthe n inputsymbolisintroduced,

Vn isthe outputsymbol (or sequencef outputsymbolg produced viaenxy, is introducedif the state isa.

If theoutputsymbolsof onetranglucercanbeidentifiedwith theinputsymbolsof asecondthey canbe
connecedin tandemand the resut is aso atranglucer If thereexists a secondtranglucerwhich operags
ontheoutputof thefirst and recoverstheoriginal input, thefirst translucerwill becallednon-sngularand
the secand will be calledits inverse.

Theoem7: The outputof a finite state tranglucerdriven by a finite state statistical sourceis a finite
statestatisticalsource,with entrofy (per unittime) less thanor equalto thatof the input. If the tranglucer
isnon-sngularthey areequal

Leta repregntthestate of thesource which producesasequencef symbolsx;; andlet 3 be the stateof
thetrangluceywhichproducesinits output blocksof symbolsy;. Thecombinedsystencanberepresented
by the“productstatespace”of pairs(a, 8). Two pointsin the space(as1, 81) and(az, 32), are connectedby
alineif a1 canproducean x which changes3; to 82, andthis line is giventhe probability of thatx in this
case.Thelineislabeledwith the block of y; symbolsproducedby the translucer Theentopy d theoutput
canbecalculatedss theweightedsumover the statesIf we sumfirst on 8 eachresultingtermislessthanor
equalto the correponding term for o, hencethe entropy is notincreagd. If thetransluceris non-sngular
let its outputbe connectedo theinversetransducerlf Hj, H; andH; arethe outputentopies ofthe source,
thefirstand secondransducersespectrely, thenH; > H, > H; = H; andthereforeH; = H.
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Suppo® we have asystemof congraintson possible sequencesf the typewhich canberepregnid by

alineargraph asin Fig. 2. If probabilities pi(js) wereassiged to the various linesconnecting statei to statej
this would becaneasource. Thereis one particular assigimert which maximizesthe resuting entropy (see
Appendk 4).
Theoem8: Let the system of congraints conddered asa channelhave acapady C = logW. If we
assigqn
(9 _ Biyy-e
P’ = EW g
Whereﬁi(js) is the duration of the s symbol leadirg from statei to statej andtheB; satisfy
o
Bi=yBW"
5]

thenH is maximizeaandequalto C.

By proper assighmert of the trarsition probabilities the ertropy of symbols on a chamel canbe max-
mizedatthe channelcapacity

9. THE FUNDAMENTAL THEOREM FORA NOISELESSCHANNEL

We will now justify our interpretatian of H asthe rateof generatingnformationby proving thatH detr-
mines the chamel capacity requiredwith maost eficient coding.

Theoem: Let a sourcehave enropyH (bits per ymbol) anda channelhave acapacityC (bits per
second. Thenit is possible to encodethe outputof the sourcein such a way asto transnit at the azerage

C . L . ) )
rateﬁ — e symbolsper secondover thechannelwheree is arttrarily small. It is not passile to transnit at

C
an averagerategreaterthanﬁ )

Theconwersepart of thetheoremlhatE cannotbeexceededmay beproved by notingthattheentropy

of thechannelnputper £condis equalto thatof the source sincethetransnitter must be non-sngular and
also this entropy cannotexceedthe channelcapacity HenceH’ < C andthenumberof symbols per second
=H’'/H <C/H.

The first part of the thearemwill be proved in two diff erert ways. The first method is to consider the
set of al sequence®f N symbolsproducedoy the source.For N large we candividethese into two groups
onecontining lessthan 2(H+7MN membersand the secondcongining lessthan 2RN membergwhereR is
the logarithm of the number of differert symbols) and having atotal probability lessthanyu. AsN increases
n andy, approactzero. The numberof signak of duraton T in the channelis greaterthan2(C=)T with 6
smallwhenT islarge. if we choo®

H
T= (C + A) N

thentherewill be asufficient number of sequencesof chamel symbalsfor the high probability groupwhen
N andT aresufficiently large (however small A) and alsosameadditional ones. The high probability group
is codedin an arbitrary one-b-oneway into this £t Theremaning sequencesrerepregnted by larger
sequencesstarting and endingwith one of the sequencesiot usedfor the highprobability group. This
special sequenceacs as a start and stop signalfor a differentcode. In betweena sufficient time is all owed
to give enoughdifferentsequencesor al thelow probabilitymesages Thiswill require

R
T = (6 + <P> N
whereyp is small. The meanrateof trarsmissim in messag symbols per secad will thenbe greaterthan

_1 B
[(1—5)%”%1 - [(1-5)(%+A) +5(C—R;+<p)] '
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As N increase®, A andy approactzeroandtherateapproache C.

Anothermethodof performngthis codingandthereby preingthetheoremcanbede<ribedasfollows:
Arrangethe messgesof lengh N in orderof decreasg probability and suppo® their probabilitiesare
p1> P2 > P3--- > pn. Lt Ps= zi‘l pi; that is Ps is the cumulative probability upto, but not including, ps.
We first encaleinto abinary system. The binary code for messag sis obtainedby expanding Ps asa binary
number Theexpansonis carriedoutto ms placeswheren is the integer satisfying:

1 1
log, — <ms< 1+log, —.
Ps Ps

Thus the messags of high probability arerepresenedby short codes and those of ow probability by long
codes. From theseinequalities we have

1 1

o <ps< P
Thecodefor Ps will differ fromall succeeding@nesin oneor moreof its mgs placessinceall theremaining
P areat Ieastzims larger andtheir binaryexpansonsthereforediffer in thefirst ms places.Consequentlyll
the codesare differentandit is possible to recover the mesage from its code. If the channekequencesare
not alreadysequencesf binarydigits, they canbe asribedbinarynumberdn anarbitrary fashon andthe
binarycodethustrandatedinto signak witable for the channel

The averagenumberH’ of binary digits usedper ymbol of original mesage is ea#ly edimated. We

have

1
H' = N Z MsPs.
But 1 1 1 1 1
N Z(IOQZE) ps < N zmsps <N Z(1+|092E) Ps
andtherefore,

1
GNSHI<GN+N

As N increase$y approachesl, theentopy o thesourceandH’ approachebl.

We seefrom this thatthe inefficiency in coding, whenonly a finite delay of N symbolsis used, need
not be greaer than ﬁ plus the differerce betweenthe true entropy H andthe entropy Gy calculatedfor
sequence®f length N. Theper cenexcesgime needecbver theidealis therefordessthan

GnN 1
TR

This method of encoding is subdantially the sameas onefound independety by R. M. Fano? His
mehodisto arrangehe messgesof lengh N in order of decreasig probability . Divide this seriesinto two
groupsof asnearly equalprobability aspossible. If the messgeis in thefirst groupits first binary digit
will be 0, otherwisel. The groupsaresmilarly dividedinto subsetsof nearly equalprobability andthe
particularsubsetdetermineghe secondbinary digit. This procesds continueduntil eachsubset contains
only onemesage. It is eafly seenthatapartfrom minordifferenceggenerdly in thelad digit) thisamounsg
to the samething asthe arithmeticprocesslescribedabove.

10. DISCUSSIONAND EXAMPLES

In orderto obtain the maximumpower tranger fromageneratr to aload,atrangormermug in generalbe
introducedso thatthe generabr as £enfrom theloadhastheloadresstance.Thestuation hereis roughly
anabgous Thetranglucerwhich doesthe encoding should match the sourceto the channelin a statistical
sense.Thesourceas £enfrom the channethroughthe tranglucershould have the ssmestatistical structure

9TechnicalReportNo. 65, The ResearchLaboratoryof Electronics M.I.T., March 17, 1949.
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asthe sourcewhich maximizesthe entropy in the channel The contentof Theorem9 is that althoughan
exactmath is notin generalpossible, we canapproxmat it asclosely as desred. Theratio of the acual
rateof trarsmissia to the capacity C may be caled the efficiency of the coding system. Thisis of course
equalto theratio of the acual entropy of the channelsymbolsto the maximumpossible entropy.

In general,ideal or nearlyideal encodingrequiresa long delayin the transmitterand recever. In the
noiseless cae which we have beenconsdering, the main funcion o this delay is to allow rea®nabl good
matchingof probabilitiesto correpondinglengthsof sequences With a good codethe logarithmof the
reciprocalprobability ofalongmesagemud be proportionako thedurationof thecorrepondingsignal,in
fact

—1

‘ logp _ C‘

T
mug besmall for all but asmal fraction o thelongmesages

If asourcecanproduceonly oneparicular mesageits entropyis zero,andno channelis required. For
example,a computingmachineset up to calculatethe successie digits of = producesa definite sequence
with no charceelemeit. No chamel is requiredto “transmit” this to another point. One could construct a
secondmachneto compuethesamesequencest thepoint. However, thismay beimpractcal. Insuchacas
we canchootoignoresomeor al of the statistical knowledgewe have of the source.We mightconsder
the digits of 7 to be arandomsequencen thatwe mndruct a system capabé of sending ary sequencef
digits. In asimilar way we may choo% to use some of our statistical knowledgeof English in congdructing
a mde, but nat all of it. In sucha casewe cnsider the source with the maximum ertropy subjectto the
statisticalconditions we wish to retain The entropy of this saurce determires the dhannel camacity which
is necesary andsufiicient. In then exampk the only informaton retanedis thatall the digits arechoen
fromtheset 0,1,...,9. In the ca® of English onemight wish to use the statistical saving possible dueto
letter frequences, but nothing else. Themaximumentropy sourceis thenthe first approximaionto English
andits enropy determinestherequredchannelcapadiy.

As asimple exampk of some of these resuts consder a sourcewhich producesa sequencef leters
s\r/]or?;anfrom amongA, B, C, D with probabilities 3, 7, £, 4, succesive symbolsbeingchonindependethy.

e have

H=—(3log3+logZ+2log3)
= I bits per gmbol

Thus we canapproximatea coding systemto encale messags from this sourceinto binary digits with an
averageof 421 binary digit persymbol. Inthis casave canactually achevethelimiting value by thefollowing
code(obtainedby the methodof the secondproof of Theorem):

A 0
B 10
C 110
D 111

Theaveragenumberof hinary digits usedin encodhgasequencef N symbolswill be
2
N(3x1+3 x2+5x3) = IN.

It is easilyseenthat the binary digits O, 1 have probabilities % % sothe H for the codedsequencess one
bit per symbol. Since,onthe average,we have % binary symbolsper original | etter, the entropiesonatime
bags are the same.Themaximum possible entropy for theoriginal set islog4= 2, occurrngwhenA, B, C,
D have probabilities , 4, 3, . Hencetherelative entropy is §. We cantransate the binary sequencesnto
the original set of symbolson atwo-to-onebass by thefollowing table:

00 A
01 B
10 (o4
11 D’

18



Thisdoubleprocesghenencodeghe original mesage into the samesymbolsbut with anaveragecompres
sion ratio §.

Asasecondexampk mndderasourcewhich producesasequencef A'sandB’swith probability p for
A andg for B. If p<« gqwe have

H = —logpP(1—p)*~P
= —plogp(1— p)(l—P)/p

= plog =
5
In such aca® onecancongdructafairly goodcoding of the messgeona0, 1 channeby sending a specal
sequencesay 0000,for theinfrequent gmbol A andthena sequenceandicaingthenunberof B's falowing
it. This could be indicatedby the binary represeration with all numbers containing the special seqience
deketed. All numbersupto 16arerepregntedasusual; 16isrepregnied by the net binarynumberafter 16
which doesnotconfain fourzeros namel 17= 10001 etc.
It canbeshown thatas p — 0 thecoding approacherlealprovidedthe lengh of the special sequences
propery adjusted.

PART II: THE DISCRETECHANNEL WITH NOISE

11. REPRESENTATION OF A NOISY DISCRETE CHANNEL

We now consder the cae wherethe signalis perturbedby noise during transnisson or at oneor the other
of the terminals. This meansthat the receved signal is not necessariljthe sameas that sent out by the
trangmitter. Two casesmnay be distinguished. If a particulartransnitted signal always produceshe same
receved signal,i.e.,thereceived signalis adefinitefunctionof thetransmittedsignal, thentheeff ectmaybe
calleddistortion. If this functionhasaninverse — no two transnitted signalsproducingthe sasmereceved
signal — distortion may becorreced, at leas in principle, by merely performing the inverse funcional
operatioronthereceved signal.

Theca® of intere$ hereis thatin which the signaldoesnot always undego the same changean trans
mission. Inthis casewe may assume theeceved signal E to be afunction of the trarsmittedsignal Sanda
secondvariable, the noise N.

E=f(SN)
Thenoise is consderedto be a chancevariable jus as the mesage was abowve. In generalit maybe repre-
sented by a suitable stochagic proces. The mos generaltype of noisy discrete channele shall consder
is ageneralizatiorof thefinite statenoise-free channeldescribedprevioudy. We assume a finite numberof
statesand a setof probabilities
pa,i (/67 J)

This isthe probability, if the chamel isin statea andsymboli is trarsmitted that symbol j will bereceved
andthechanneleftin state 3. Thusa andg rangeover the possible states, i over the possile transnitted
signakandj over thepossiblereceved signals.Inthecasevheresuccessie symbolsareindependentiper
turbedby the noise trereis only one state,and the chamel is descriledby the set of trarsition probabilities
pi(j), the probability of trarssmittedsymbal i beingreceved as j.

If anoisy channelsfedby asourcethereare two statistical proceses at work: the sourceandthenoise.
Thusthereare a numberof entropiesthat canbe calculated. First thereis the entropy H(x) of the source
or of theinputto the channel(thes will be equalif the transnitter is non-sngular). The entropy of the
outputof thechannel].e., thereceved signal, will bedenotedoy H(y). Inthenoiseless cag H(y) = H(X).
Thejoint entrogy of inputandoutputwill beH (xy). Finally thereare two condtional entropiesHy(y) and
Hy(x), theentrogy of the outputwhentheinputis known andconversely. Amongthes quantitieswe have
therelations

H(X,y) = H(X) +Hx(y) = H(y) + Hy(x).
All of these entropiescanbe measiredon a per-secondor a per-symbolbass.
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12. EQUIVOCATION AND CHANNEL CAPACITY

If the channel is noisy it is nat in general possilde to recastruct the original messag or the trangnitted
signal with certainty by any operationon the receved signal E. There are,however, ways of trarsmitting
the informatonwhich areoptimal in combaingnoise. Thisisthe problemwhich we now consder.

Suppos therearetwo possible symbols0 and1, and we aretransnitting at a rateof 1000symbolsper
secand with probabilities pp = p1 = % Thusour sourceis produchg informaton at the rate of 1000bits
per £cond. During trangnission the noise introduceserrorsso that, on the average,l in 100is receved
incorrecty (a0 as 1, or 1 as0). Whatis therate of transnisson of informaion? Certainly lessthan1000
bits per condsinceabout 1% of the receved symbolsare incorrect. Our first impulse might be to say
the rate is 990 bits per gcond,merely subtracing the expeced numberof errors. This is not satisfaciory
sinceit fails to take into accounthe recipients lack of knowledgeof wheretheerrorsoccur We maycarry
it to anextremeca® and suppo® the noise so greatthatthereceved symbolsare entirelyindependentf
thetransmittedsymbols. The probability of receving 1 is % whatever was transnitted and similarly for O.
Thenabouthalf of thereceived symbolsare correctdueto chancealone and we would be giving the system
credt for trangnitting 500 hits per sscand while actually noinformationis being trarsmittedat all. Equally
“good” transmission would be obtainedby dispensng with the channelentirely and flipping a win at the
receving point.

Evidentlythe propercorrectionto apply to the amountof informationtransnittedis the amountof this
informationwhichis missingin thereceved signal, or alternatvely the uncertaintywhenwe have receved
a signalof whatwasactualy sent. From our previousdiscussion of entropy as a measire of uncerainty it
seemgeasonabléo usethe conditionalentropy of the messageknawing thereceved signal, asa measure
of this missirg information. This is indeedthe proper definition, aswe shall seelater Following thisidea
the rate of acual transnisgon, R, would be obtainedby subtracing from the rate of producton (i.e., the
entropy o thesourcethe averagerate of condtionalentropy.

R=H(x) - Hy(x

Theconditionalentropy Hy(x) will, for conveniernce,be calledthe equivocation. It measues tre average
ambiguityof thereceved signal.

In the exampleconsideredbove, if a0 isreceved thea poderiori probability thata 0 was transnitted
is .99,andthata 1 wastransmitteds .01. Thesefiguresarereversedf alisreceved. Hence

Hy(x) = —[.99109.99+ 0.0110g0.01]
=.081bits'symbol

or 81 bits per cond.We maysay thatthe systemis transmitting at arate1000— 81 = 919bits per gcond.
In theextremecasewherea 0 is equallylikely to bereceved asa0 or 1 andsimilarly for 1, thea pogeriori
probabilities are 1, 1 and

Hy(x) = —[3l093 + 3 log3]
=1 bit per ymbol

or 1000bits per gcond.Therate of trangnissonisthen0 asit should be.

Thefollowing theoremgives adirectintuitiveinterpretation of the equivocation andalsoserves to jatify
it as thke unique aporopriate measue. We consider a communication systemand anobsener (or auxiliary
device)who canseeboth what is it and what isrecovered (with errars due to noise). This obsener notes
theerrorsin therecoveredmessagandtransmitsdata tothereceving pointover a “correctionchannel”to
enabletherecever to correcttheerrors. Thesituationis indicatedschematicallyn Fig. 8.

Theorem10: If the correctionchannelhas a capacityequalto Hy(X) it is possible to so encodethe
correctiondataas to sendit over this channeland correctall but anarbitrarily smallfractione of theerrors
This is not possibie if the chamel capacity is lessthanHy(x).
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Fig. 8—Schemaic diagram of a comrection system.

Roughly then,Hy(x) is the amountof additionalinformationthat must be supplied per secondat the
receving pointto correctthereceved message.

To prove the first part, considerlong sequencesf recevved messageM’ and correponding original
messa@ M. There will be logarithmically T Hy(x) of the M’s which could reasonablhave producedeach
M’. Thuswe have T Hy(x) binarydigitsto sendeachT seconds This canbedonewith e frequeng of errors
ona channelof capadiy Hy(x).

Thesecondpartcanbeproved by noting, first, thatfor ary discree chancevariablesx, y, z

Hy(x,2) > Hy(x).
Theleft-handside canbeexpandedo give

Hy(2) + Hy(x) > Hy(x)
Hyz(X) > Hy(X) — Hy(2) > Hy(x) — H(2).

If weidertify x asthe outputof the source y asthereceved signaland zasthesignal sentover thecorrection
channelthentherighthandsideistheequivocaionlesstherate of trangnisson over thecorrectonchannel
If the camacity of this chamél is lessthan the equivocation the right-hand side will be greaterthanzeroand
Hy(x) > 0. But thisis theuncertaintyof whatwas nt,knowing boththereceved signal and thecorrection
signal If thisis greaerthanzerothefrequeng of errorscannotbearbitrarily small.

Exanple:

Suppostheerrorsoccurat randomin a sequencef binary digits: probability p thata digit is wrong
andg= 1- p thatit is right. Theseerras canbe correctedif their position is known. Thus the
correctionchannelneedonly sendinformationas to thes postions. This amountsto transnitting
from a saurce which producesbinary digits with probability p for 1 (incorrect)and g for O (correct).
Thisrequiresachannebf capacity

—[plogp+qlogq]

which is the equivocation of the original system.
Therate of transnisson R canbe writtenin two other formsdue to the identities noted atlove. We have
R=H(x)

(
=H(y) — Hx(
=HX) +H(y) —H(xy).

Hy(x)



Thefirst defining expresion hasalreadybeeninterpreied as theamountof informaion sentlessthe uncer
tainty of whatwas snt. Thesecondmeasirestheamountreceived lessthe partof thiswhichis dueto noise.
Thethird is the sum ofthe two amouns lessthejoint entropy andthereforen a sens is the numberof bits
per £condcommonto thetwo. Thusall threeexpresionshave acertin intuitive significance.

The capacityC of a noisy channelshould be the maximum possible rate of transnisson, i.e., therate
whenthe sourceis propery matchedto the channel We thereforedefinethe channelcapadiy by

C = Max(H(x) — Hy(x))

wherethe maximumis with regectto all possible informationsourcesusedasinputto the channel.If the
channelsnoiseless Hy(x) = 0. Thedefinition isthen equivalent to thatalread givenfor anoiselesshamel
sincethe maximumentropy for thechanneisits capadiy.

13. THE FUNDAMENTAL THEOREM FORA DISCRETE CHANNEL WITH NOISE

It may seemsurprising that we should define a definite capadiy C for a noisy channelsincewe cannever
send certain informaionin suchaca<. It is clear however, thatby sending the informatonin aredundant
form the probability of errars canbe reduced For examge, by repeatirg the messag mary timesand by a
statisticalstudyof thedifferentreceved versionof themessagé¢he probability of errorscouldbe madevery
small. Onewould expect,however, thatto make this probability of errorsapproactezero,the redundang
of the encoding mug increag indefnitely, and the rate of transnisson thereforeapproachzero. Thisis by
no meandrue. If it were,therewould not be a very well definedcapacity but only a capacityfor a given
frequeng of errors, or a given equivocaion; the capaciy going davn asthe aror requremens are made
more stringent. Actually the capacity C definedabove hasa very definite significance.lt is possible to send
information at the rateC throughthe channewith assmall a frequencyof errors or equivocaton asdesred
by properencoding. This satementis nottruefor any rate greaerthanC. If an attemptis madeto transnit
atahigherrate thanC, say C+ Ry, thentherewill necessarilype anequivocationequalto or greaterthanthe
excessR;. Nature takespayment by requiring justthat much uncertairty, so that we ae not actwaly getting
ary morethanC throughcorrecty.

Thesituatonisindicaedin Fig. 9. Therate of informatoninto the channels plotted horizontally and
the equivocationvertically. Any pointabove the heary line in the shadedegion canbe attainedandthose
belov cannot.The pointson theline cannotin generabe dtained,but therewill usually betwo pointson
thelinethat can

Thesereslts arethe mainjustification for the definition of C and will now be proved.

Theorem11: Letadiscretechannehave thecapacityC andadiscrete sourcethe entropy per £condH.
If H < C thereexistsa coding systemsuchthat the output of the source canbe trarsmittedover the chamel
with anarhitrarily smallfrequency of errors (or an arbitrarily small equivocatian). If H > C it is possilie
to encodahe sourcesothatthe equivocationis lessthanH — C + € wheree is arhitrarily small. Thereis no
methodof encodngwhich givesanequiocaionlessthanH —C.

The method o proving the first part of this thearemis not by exhibiting a coding method having the
desiredproperties, but by showing that such a code must exist in a certaingroup d codes. In factwe will

NN SNNNNNY
ATTAINABLE
REGION

C H(x)

Fig. 9—The gquivocaion possble for agiveninputentopy to achannel
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averagethe frequeng of errorsover this groupandshow thatthis averagecanbe madelessthane. If the
average of a setof numbers islessthane theremustexist atleastonein the setwhichis lessthane. This
will estaltish the desiredresut.

ThecapacityC of anoisychannehasbeendefinedas

C = Max(H(x) — Hy(x))

wherex isthe inputandy the output The maximizaionisover al sourceswhich mightbe usedasinputto
the channel

Let S bea sourcewhich achieves the maximumcapacityC. If this maximumis notacualy achieved
by ary sourcelet S be a sourcewhich approximates to giving the maximumrate. Suppog & is usedas
inputto thechannel.We consderthe possible transnittedand receved sequencesf alongdurationT. The
following will betrue

1. Thetransnitted sequencesall into two classes, a high probability groupwith about2™ ) members
and the remaining sequencesof smalltotal probability .

2. Similarly the received sequencesave a high probability set of about2™®) membersand a low
probability setof remairingseaqiences.

3. Eachhigh probability outputcould be producedby about2™ ) inputs The probability of all other
casesas a smalltotal probability .

All the e€’'sandd’s implied by thewords*“small” and“about’ in thes statemens approactzeroas we
allow T to increaseand § to approachthe maximizing source.

The situation is suammarkzedin Fig. 10 where the input sequencesare points on the left and output
sequencegointson theright Thefan of cross linesrepre&ns the rangeof possible causs for a typical
output

E
.
M .
° .
) .

H(X)T
HIGH PROBABILITY ©® 2H(Y)T
MESSAGES HIGH PROBABILITY

RECHVED SIGNALS

2H ()T
REASONABL E CAUSES
° FOREACHE °

2HX(Y)T
REASONABLE EFFECTS
FOREACHM

Fig. 10—Schemaitc represenétion d therelationsbetveeninput and outpusin achannel
Now suppog we have another ©urceproduchginformatonat rate Rwith R< C. Intheperiod T this

saurcewill have 2TR high probability messags. We wish to assa@iatethesewith a selectian of the possitie
channelinputsin such a way as to get a small frequeng of errors We will set up this associationin all
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possible ways (usng, however, only the highprobability groupof inputsas determinedby the sourceSy)
and averagethe frequeng of errorsfor this large classof possible coding systems This is the sameas
calculatingthefrequeng of errorsfor arandomas®ciation o the mesagesand channelnpus of duraton
T. Suppog aparicular outputy; is obsened. What isthe probability of more thanone messag in the set
of possible caugs of y1? There ae 2"R mesagesdistributedat randomin 2"H® paints. The probability of

aparticular point being amesageis thus
2T(R-H(X)_

Theprobability thatnoneof the pointsin thefan is amesage (apartfrom theactualoriginatingmessge)is

P = [1-2T(R-HC)] 2T

Now R < H(x) — Hy(X) soOR—H(x) = —Hy(x) —n with  postive. Consequernly
P=[1-2"THX-Tn] 2T

approachef@sT — )
127",

Hencethe probability of anerrar approactes zercand the first part of the thearemis proved.

The secondpartof the theoremis eadly shown by noting thatwe could merely sendC bits per £cond
from the source,completelyneglecting the remainderof the information generated.At the recever the
negleciedpartgives an equivocaionH (x) — C and the part trarsmittedneedonly add e. Thislimit canalso
beattainedn mary otherways aswill be shovn whenwe consderthecontinuouscas.

Thelaststatememnof the theoremis asimple consequenceof our definition of C. Suppogwe canencode
asourcewith H(x) = C+ain suchaway as toobtainan equivocationHy(x) = a— e with e postive. Then
R=H(x) =C+aand

H(x) —Hy(x) =C+e¢

with e pasitive. This contrad ctsthe definition of C asthe maximumof H(x) — Hy(x).

Actually more hasbeenproved thanwas sated in the theorem. If the averageof a set of numberss
within e of of their maximum, afracton o at mog /e canbemorethan,/e below themaximum. Sincee is
arhtrarily smallwe cansaythat amost all the systemsarearbitrarily close to the ideal.

14. DISCUSSION

Thedemonsraton d Theoreml1, while not a pureexistenceproof, has ®me of the deficiencies of ach
proofs An atemptto obtain agoodapproxmaitonto idealcoding by following the mehod of the proofis
generally impractical.In fact,apart from some rather trivial casesand certainlimitin g situations, noexplicit
degription of a series of approximatiorto the ideal hasbeenfound. Probablythis is no accidentbut is
related to thedifficulty of givinganexplicit congructonfor agoodapproxmationto arandomsequence.

An approxmaitonto theidealwould have the propery thatif the signalis ateredin area®nabk way
by the noise, the original canstill be recosrered In other words the dteration will not in general bring it
closrto anotherea®nablesignal thanthe original. Thisis accompli®edat thecog of acertainamountof
redundang in the coding. Theredundang mug be introducedin the properway to combatthe particular
noise structureinvolved. However, ary redundang in the sourcewill usually helpif it is utilized at the
receving point. In particular if the sourcealreadyhas a certainredundang and no attemptis madeto
eliminateit in matchingto thechannelthis redundang will helpcombatoise. For example,in anoisless
telegraphchannelonecould save ebout50%in time by properencoding of the messges Thisis notdone
andmog of theredundang of English remahnsin the channelsymbols. This hasthe advantage,however,
of allowing considerablenoisein the channel.A sizablefraction of the letterscanbereceved incorrectly
ard still recanstructedby the context. In factthis is probably not a bad agproximation to the idealin mary
casessincethe statistical structureof Englishis ratherinvolved and the reasonablé&nglish sequencesire
nottoofar (in the sense requiredfor the theorem)rom arandomselecion.
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As in the noiseless cae adelay is generaly requiredto approachthe idealencoding. It now hasthe
addtional funcion o alowing a large sampk of noise to affect the signal before any judgmentis made
atthe receving point as tothe original messagelncreasinghe samplesize always sharpenshe possible
statisticalassertios.

Thecontentof Theoreml1 andits proof canbeformulatedin a somewvhatdifferentway which exhibits
the conrection with the noiselessasemore dearly. Considerthe possilde signals of duration T andsuppo®
asubsetof themis selectedto be ugd. Letthosin thesubsetall be used with equalprobability, and suppo®
therecever is constructedo select,as theoriginal signal,the mostprobablecausefrom the subsetwhena
perturbedsignalisreceved. We defineN(T, g) to bethe maximumnumberof signakwe canchoo®for the
stbset suchthat the probability of anincorrectinterpretatian is lessthan or equal to g.

logN(T,q)
T

Theorem 12: TLim = C, whereC isthe channelcapadiy, providedthatq doesnotequalO or

—00
1.
In otherwords no matterhow we set out limits of reliability, we candistinguish reliably in time T
enoughmessagesto correpondto aboutCT bits, when T is sufficientlylarge. Theoreml2 canbecompared
with the definition of the capacity of a noiselesshamel givenin Section 1.

15. EXAMPLE OF A DISCRETE CHANNEL AND ITS CAPACITY

A simple exampk of adiscree channeisindicaiedin Fig. 11. Therearethreepossible symbols. Thefirst is
never affectedby noise. The secondandthird eachhave probability p of coming throughundisturbed,and
g of being changed into the other of the pair. We have (letting @ = —[plogp + gqlogg] andP andQ bethe

¢ —>—0
p
TRANSMITTED { RECHVED
SYMBOLS SYMBOLS
q
p

Fig. 11—Exampk of adiscrete channel

probabilities of using the firstand secand symbols)

H(x) = —PlogP — 2QlogQ
Hy(x) = 2Qq.
We wish to choos P andQ in suchaway as tomaximizeH (x) — Hy(x), subjectto the condraintP+2Q =1.

Hencewe consder
U = —PlogP — 2QlogQ — 2Qa + A(P+ 2Q)

ou
Fr e —1—logP+XA=0
ou
0 —2-2logQ—-2a+2X=0.
Eliminating A
logP =logQ+ «
P=Qe& =Qg3
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p
P=
B+2
The channel camacityis then
p+2
5
Note how this checksthe obviousvaluesinthecasepp=1and p= % Inthefirst, 3 =1 andC =log3,
which is correct since the chamel is then naselesswith three posside symbals. If p= % S =2ad
C = log2. Herethe secondand third symbols cannotbe distinguished at al and act togeter like one
symbol. The first symbol is usedwith probability P = % ard the secand ard third together with probability
%. This may be distributed betweerthemin ary desiredway and still achieve the maximum capacity.
For intermediatevaluesof p the channel capacity will lie betweenlog2 ard log3. The distinction
betweenthe secondandthird symbolsconveys someinformaion kut notasmuchasin the noiseless cas.
Thefirstsymbolis usedsomavhatmorefrequentlythanthe othertwo becausef its freedomfrom noise.

C=log

16. THE CHANNEL CAPACITY IN CERTAIN SPEAQAL CASES

If the noise affects successie chamel symbadls independently it can be described by a setof transtion
probabilities pjj. Thisis the probability, if symbal i is snt, that j will bereceved. The maximumchannel
rate isthengiven by the maximum of

- Rpijlogy Ppij + ) Rpijlogpi
IaJ [ |7J

where we vary the B, subjectto y B = 1. Thisleadsby themethodof Lagrangeo the equatons

Psj
jlo = s=1,2,....
Zps] gZiF’lpij a
Multiplying by Ps andsumming ons shows that 1 = C. Lettheinverseof pg; (if it exists)be he sothat
5 shstpsj = dtj. Then:
> hstpsjlogpsj—logy Rpr =C ha.
ST l s

Hence:
> Ppi = exp[—CZ hst+ > hstpsjlog psj]
I s S]

or,
RP= Zhit exp [—CZ hst + Z hstpsjlog psj] .
S SJ

This isthe systemof equations for determining the maximizing values of P, with C to be determined so
that Y P = 1. Whenthisis doneC will be the dhannel capacity, and the P the proper probabilities for the
channekymbolsto achieve this capacity

If eachinputsymbolhasthe same set of probabilitiesonthelinesemeging fromit, andthe sameis true
of eachoutputsymbol,the capacitycanbeeasilycalculated Examplesareshown in Fig. 12. In suchacase
Hx(y) is independenof the distribution of probabilitieson theinputsymbols andis givenby — 3 p;log p;
wherethe p; arethevaluesof thetranstion probabilitiesfrom any input symbol. Thechannekapacityis

Max[H(y) — Hx(y)] = MaxH(y) + ) pilogp.

Themaximum ofH(y) is clearlylogmwheremisthe numberof outputsymbols sinceit is possibleto make
themall equaly probabé by making theinputsymbolsequaly probabké. Thechannelcapacdiy istherefore

C =logm+ Z pilogpi.
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Fig. 12—Examplesof discretechannelswith the sametransitionprobabilitiesfor eachinput andfor eachoutput.

In Fig. 12ait would be
C=log4—log2=Ilog2

Thiscould be acheved by using only the 14 and 3dsymbols In Fig. 12b
C=log4-£log3-1log6
=log4—log3— ilog2
= Iog%Zg.
In Fig. 12cwe have
C=log3- }log2—1log3— £log6

233368
Suppo® the symbolsfall into severalgroupssuch that the noise never caugs a symbolin onegroupto
be mistakenfor a symbol in anohergroup. Let the capadyy for the nth groupbe C, (in bits per £cond)
whenwe use only the symbolsin this group. Thenit is eay shown that for bed use of the entire set, the
total probability R, of all symbolsin thenth groupshould be

2Cn

Within a group the probability is distributedjust as it would be if thesewerethe only symbals being used
Thechannekcapadiy is

Pn

C= IogXZC”.
17. AN EXAMPLE OF EFFICIENT CODING

Thefollowing exampk, althoughsomewhatunreaistic, is acas in whichexactmathingto anoisy channel
ispossible. Thereare two channelsymbols, 0 and 1,andthe noise affects themin blocksof sevensymbols
A block of seven is either transnitted without error, or exactly onesymbol of the sevenis incorrect. Thes
eight possiblities are equally lik ely. We have
C = Max[H(y) — Hx(Y)]
= 3[7+3log}]
= 4 bits'symbol

An efficient code, allowing complete correction of errors and transnitting at the rateC, is the following
(foundby a methoddueto R. Hamming):
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Let a block of sevensymbolsbe X1, Xp,...,X7. Of these X3, X5, Xg and X7 aremessge symbolsand
chosnarbitrarily by the source.Theotherthreeare redundanandcalculated as follows:

X4 ischosentomake a=X3+Xs+Xe+X; even
Xo tt B Xt Xet Xy
X ottt Yy=X1+ X3+ X5+ X7 ©

Whenablock of seven isreceved «, 8 and+y arecalculatedand if evencalledzero,if oddcalledone.The
binarynumbera 3+ thengivesthe sub<ript of the X; thatis incorrect(if 0 therewasno error).

APPENDIX 1
THE GROWTH OF THE NUMBER OF BLOCKS OF SYMBOLS WITH A FINITE STATE CONDITION

Let Nj(L) bethe numberof blocksof symbolsof lengh L endingin statei. Then we have
= S N(L-b{)
1,S

Wherebﬁ , bﬁ, by} arethelength of thesymbolswhich maybe chosenin statei andleadto statej. These

areli neardlfferenceaqualonsandthe behsior asL — c mug be of the type
Nj = AjWE.
Subgtituting in the diff ererceequation
AjWL _ ZAjWL_bi(js)
or

:ZAW”@

(
3 (3w - a=o
For thisto be possible thedeerminant

—p®
DW) = Jay] = [F WA~

mustvanishandthis determinedV, whichis, of cours, thelarged realrootof D = 0.
The quantity C is thengiven by

AA/L

c = Lim 292 AN

L—oo

= logW

andwe dso note thatthe same growth propertesresut if we requrethat al blocksstart in the same(arbr
trarily chosen) state.

APPENDIX 2
DERIVATION OF H = — 5 pilogp;
11 1 . . . :
LetH (ﬁ’ I —) = A(n). From condtion (3) we candecanpose achoicefrom s™ equally lik ely possi-

bilities into a seriesof m choicesrom s equaly lik ely possiblities and oltain

A(S™) = mA(s).
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Similarly - 0
A(t") = nA(t).

We canchoo® n arhitrarily large and find an mto satisfy

"<t < s(mHD),

Thus, taking logarithmsand dividing by nlogs,

5—_—+— or |[———|<e
n=logs— n n logs

m logt m 1 m Iogt|
wheree isarbitrarily small. Now from the monobnic propert of A(n),

A(ST) < A" <A™
MA(S) < NA(t) < (M+ 1)A(S).

Hence,dividing bynA(s),

n—A)~n n n A9
A(t) logt _
A logs| <% A0 =Ko

whereK must be positive to satisfy(2). o
Now suppog we have achoicefrom n possililities with commeasuale probabilities p; = —||'1 where

the n; areintegers. We canbreakdown a choicefrom § n; possiblities into a choice from n poséih'lities
with probabilities ps, ..., pn andthen,if theith was choen,achoicefrom n; with equal probabilities. Using
condition (3) again, we equate the total choicefrom ¥ nj ascompuedby two methods

Klog} ni=H(ps,.--,pn) + K} pilogn;.

Hernce

H=K|[3 pilogy ni— Y pilogn]
= Jog — _ 0a D
=-K> p Iogzni =—K? pilogpi.
If the p; areincommeasrabk, they may beapproximaied by rationak andthe same expresion mug hold

by our coninuity assamption. Thusthe expresion holdsin general Thechoice of coeficientK is a matter
of corvenienceand amounsto the choice of aunit of measire.

APPENDIX 3
THEOREMS ON ERGODIC SOURCES

If it is possideto gofrom any statewith P > 0 to any other along a path of probability p > 0, the system is
ergodic and the strong law of large numberscanbe appled. Thusthe numberof timesa givenpah pjj in
the network is traversed in along sequenceof lengh N is aboutproportionalto the probability ofbeingat
i, say B, andthenchoosngthis path, P pj; N. If N is large enoughthe probability of percentagerror+4 in
this islessthane sothatfor all but asetof small probability the actial numberslie within the limits

(P, Pij :i:(S)N.

Hercenearlyall sequenceshave aprobability p given by
(Ripij£6)N
p=[]r"™

29



and 3'3 is limited by

lo
3[3 z(Pp”:l:(S)bgp,J
or |
o}
gp ZPpUIogp.,\<n
This proves Theorens.

Theoren followsimmedately from this on calculating upperand lower boundsfor n(q) based on the
possible rangeof values ofp in Theorem3.
In the mixed (notergodic) ca if
L=3 pili
andtheentopies ofthe componensare H; > Hy > --- > Hy, we have the
Thearem: ’%im % = ¢(q) is adecreasig stepfunction,
—00

s—1 S
©(q) =Hs in theinternval Z @i <g< Zai-

To prove Theoremsb and 6 first note that Fy is monotonicdecreaig becaus increaing N addsa
subscript to aconditional entropy. A simple substitution for pg; (S;) in the definition of Fy shows that

Fn = NGy — (N—1)Gn_1

. . ) 1 . )
ard summing this for all N gives Gy = N ZFn. HenceGy > Fy andGy monobnic decreasg. Also they
mustapproachthe samelimit. By usingTheoren3 we seethatI'\Tim Gn =H.
—00

APPENDIX 4
MAXIMIZ ING THE RATE FOR A SYSTEM OF CONSTRAINTS

Suppo® we have aset of condraintson sequence$)f symbolsthatis of the finite state type andcanbe
repregntkd thereforeby a lineargraph. Let &; ) be the lenghs of the various symbolsthat can occurln

pasing from state i to statej. What dlstrlbutlon of probabilities P for the differentstates and pij for
choosng symbol sin statei andgoingto state j maximizesthe rate of generaing informaton underthes
congraints? The congraintsdefine a discree channeland the maximum rate mug belessthanor equalto
the capacityC of this channelsinceif al blocksof large lengh wereequaly likely, this rate would resut,
ard if possie thiswould be best.We will show thatthis ratecanbe achieved by proper choiceof the P, and

o

Theratein quegionis
~sRplogpy N

ZPpIJ)KS) M‘

Lettij = Zs 9 Evidenty for amaximum pI kexpéi(js). The constraints on maximizationare Y B =
1,ypj=1, zP(pIJ 4j)=0. Hencewe maximize

— — > Ppij logpij )
U=—Sppma, 2R 2mpi+ 3 iR =)
oU  MPR(1+logpij) + NRY I
opj M2 +A+pi+nP =0.
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Sdving for pjj
pij = AB;D™Y.

Since

Spi=1 A'=3yBD™
J J
BjD—ii

Pij = =05 =—=-

ysBsD~s

The corred value o D is the capacity C andthe Bj aresoluionsof

Bi=Y BjC
for then
BJ .
o= —C i
plj Bi
Bj -t _p.
S PgC =P
or P b
e 0
Z BiC B,
Sothatif A; satisfy
Y YCT =5
B = Bivi.

Both the setsof equations for B; and~; canbe satisfiedsinceC is suchthat

|C_Zij —dij| =0.
In this casetherate is o .
_IPpiloggCh _  IRPpjlogg
> Rpijfi s Rpij4j

but
3 Rpij(logB; —logB) = 5 PjlogB; —  PlogBi =0
J

Henrcetherate isC andasthis could neverbeexceededhisis themaximum,justifyingtheassumedswolution.
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PART IlIl: MATHEMATICAL PRELIMINARIES

In this final installment of the paperwe condder the cae wherethe signabk or the messgesor both are
continuou$y variable,in contras with the discretenatureassumedheretofore.To a mnsderableextentthe
continuousa® canbeobtainedhroughalimiting processrom thediscretecas by dividing thecontinuum
of mesagesandsignakinto alargebut finite numberof smal regionsandcalculatingthevariousparamedrs
involvedon a discretebasis.As thesizeof theregionsis decreasetheseparametersn generalapproactas
limits the propervaluesfor the mntinuouscas. Thereare, however, a few new effects thatappearandalso
ageneralchangeof emphasisn thedirectionof specializationof thegeneraresultsto particularcases.

We will not attempt,in the continuouscas, to obtainour results with the greates generality or with
the extremerigor of pure mathemaics, sincethis would involve agreatdeal ofabgract measire theory
andwould obscurethe main threadof the analysis. A preliminary gudy, havever, indicaiesthat the theory
canbeformulatedin a completely axiomatc andrigorousmannemwhich includesboth the coninuousand
discretecasesindmary others.Theoccasionalibertiestakenwith limiting processein thepresentnalysis
canbejustifiedin all cases opracticalinterest.

18. SETSAND ENSEMBLES OF FUNCTIONS

We shall have to dealin the continuousca® with sets of functionsandensemblesof functions A set of
functions, as the nameimplies, is merelya dassor callection of functions, gererally of one variable, time.
It canbe specifiedby giving an explicit represetiation of the various functions in the set, or implicitly by
givinga propery which functionsin the set posessandothersdo not Someexampksare:

1. Thesetof functons
fo(t) = sin(t +6).
Eachparticularvalue of § determinesaparticdarfunction in the set.
2. Thesetof all funcionsof time containing nofrequences over W cycles per scond.
3. Thesetof all funcionslimited in bandto W and in amplitudeto A.
4. Thesetof all Englishspeectsignalsasfunctionsof time.

An ersemlie of functions is a set of functions tagether with a probability measue whereby we may
determine the probability of afunction in the sethaving certainproperties® For example with the set,

fo(t) = sin(t +6),

we maygive aprobability distribution for 8, P(6). Theset thenbecomesan ensembk.
Somefurtherexampks of ensembkes offunctionsare:

1. A finite set of funcionsfy(t) (k= 1,2,...,n) with the probability of fx being p.
2. A finite dimensonalfamily of functions
f(a1,a2,...,an;t)
with aprobability distribution onthe parametersy;:
p(a,...,an).

For exampke we could consderthe ensembk definedby
n
f(a,...,an,01,...,0n;t) = Za sini(wt + 6;)
i=

with the anplitudesg; distributed normaly andindependety, andthe phagsé; distributeduniformly
(from 0 to 27) andindependey.

1in mathematical terminology the functionsbelongto a measire spacewhos total measireis unity.
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3. Theensembk .
. — _ Sinm(2Wt—n)
=3« awi-n)
with the a; normal and independent all with the samestardard deviation /N. Thisis arepresenation
of “white” noise, bandlimited to thebandfrom 0 to W cyclesper secand ard with average power N.2

4. Let pointsbe distributedon thet axisaccordingo a Poissondistribution. At eachselectedpointthe
function f (t) is placedandthedifferentfunctionsaddedgiving theensemble

[ee]

f(t+t)

k=—o0

wherethe ty arethe pointsof the Poison dstribution. This engmble canbe consdered asa type of
impulse or shot nose whereall theimpulsesareidenical.

5. Thesetof EnglishspeecHunctionswith the probability measurgivenby thefrequeng of occurrence
inordinaryuse.

An enemble of functionsf, (t) is stationary if the sameensembleesultswhenall functionsareshifted
ary fixed amountin time. Theensembk

fg(t) = sin(t +6)
is statianary if 8 is distributeduniformly from 0 to 27. If we shift eachfunctionby t; we obtain

fo(t+t1) =sin(t+t1+6)
=sin(t +¢)

with ¢ distributed uniformly from 0 to 2z. Eachfuncton haschangedout the ensembk & a whole is
invariantunderthetrangation. The other examples gven abowve arealso stationary

An ersemble is ergodic if it is statianary, and thereis no subset of the functions in the set with a
probability diff erert from 0 and 1 whichis staticnary. The ensembbe

sin(t 4 6)

is egodic. No subset of thes functionsof probability # 0,1 is trangormedinto itself underall ti me trans
lations On theotherhandtheenemble
asin(t + 0)

with a distributed normaly andé uniformis stationarybut not ergodic. The subset of thes functionswith
abetwveen0 and 1for exampkis dationary

Of the exampks given, 3 and4 areergodic, and5 may perhapsbe consdered . If an ensembk is
ergodicwe may say roughlythat eachfunctionin the set is typical of the ensemble. More precigly it is
known thatwith anergodicensemblean average ofary statigic over theenembleis equal(with probability
1) to an averageover the time trangations of a particular function o the set.3 Roughly speaking,each
functioncanbe expectedas time progreses, to go through with the properfrequeng, all the convolutions
of ary of thefunctionsin the set

2This repregntationcan be used as a definition of band limited white noise. It has certainadwntagesin that it involves fewer
limiting operationsthan do definitions that have beenused in the pad. The name “white noise” alreadyfirmly entrenchedn the
literature, is perhapssomewhat unfortunate. In optics white light meanseither ary continuousspectrumas contrased with a point
spectium, or aspectum which s flat with wavelengthiwhich is notthe same & a spectrumflat with frequeng).

3This is the famous ergodic theoremor ratherone agectof this theoremwhich was proved in somewhat different formulations
by Birkoff, von Neurrann, and Kooprran, and subsequentlygeneralizedoy Wiener Hopf, Hurewicz and others The literature on
ergodic theoryis quite extendve and the readeris referredto the papersof thes writers for precise and generalformulations e.g.,
E. Hopf, “Ergodentheorié, Ergebnisse der Mathematikundihrer Grenzgebiete v. 5; “On Causlity Statisticsand Probability,” Journal
of Mathenatics and Physcs, v. XlIl, No.1,1934;N. Wiener “The Ergodic Theorenj Duke Mathematicaldournal, v. 5, 1939.
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Just aswe mayperformvariousoperatonson numberr functionsto obtain new numbersor functions
we can performoperatons on engmbles to obtain new engembles. Suppog, for exampk, we have an
enemble of functons f,(t) andan operabr T which givesfor eachfunction f,(t) a resuting function
da(t):

ga(t) =T fa(t)'

Prabability measueisdefined for the setg, (t) by meansf thatforthe set f, (t). The probability of acertain
subsetof the g, (t) functionsis equalto thatof thesubset of the f, (t) functionswhich producemembersof
the givensubset of g functionsunderthe operaton T. Physcaly this correpondsto pasing the ensembk
throughsome device, for exampk, afilter, arecifier or a modulator. The outputfunctionsof the device
form theensembleg,, (t).

A device or operatar T will becalledinvariantif shifting theinput merelyshifts theoutput,i.e.,if

Ja (t) =Tfa (t)

implies
ga(t +tl) =T fa(t +tl)

for al f,(t) andal t;. It is easilyshown (seeAppendix 5 thatif T isinvariantand the inputenemble is
stationarythenthe output ensmbleis stationary Likewise if the inputis emgodicthe outputwill also be
ergodic.

A filter or arecifierisinvariantunderall ti me trandations Theoperaton of modulationis notsincethe
carrier phag gives a ceriin time structure. However, modulationis invariant underall trandationswhich
aremultiplesof the period of the carriet

Wienerhas ponted out the intimate relaion betweenthe invariance of physcal devicesundertime
trangationsandFourier theory* He has shown, in fact,that if a deviceis linearaswell as irvariant Fourier
aralysis isthenthe gpropriate mathematicaltool for dealing with the problem.

An engmble of functionsis the gppropriate mathematcal repregnttion o the mesagesproducedby
a ontinuoussource(for example,speech)of the signalsproducedoy a transnitter, andof the perturbing
noise.Communication theory is properly concerred, ashas beenemphasizedby Wierer, na with operations
on particularfunctions, but with operationsonensembesof functions. A communication systemis designed
notfor a particularspeectunctionand still lessfor a sinewave, but for theensemblef speecHunctions.

19. BAND LIMIT ED ENSEMBLES OF FUNCTIONS

If afunction of time f(t) is limited to the band from 0 to W cyclesper secand it is completely determired
by giving its ordinatesat a seriesof discretepointsspacedz\—l,v secondsapartin the mannetindicaed by the
following restit.®

Theorem 13: Let f(t) contin nofrequencésover W. Then

sin(2Wt—n)
an T (2Wi—T)
where n
X="1(zy)

4Communicationtheoryis heavily indebtedto Wienerfor much of its basc philosophy and theory His classic NDRC report,
TheIntempolation, Extrapolation and Smoothingof Stationay Time Series (Wiley, 1949), containsthe first clearcut formulation of
communicationtheoryas a statigical problem the study of operationson time series This work, athoughchiefly concernedvith the
linear predictionand filtering problem is an importantcollateralreferencein connectionwith the present paper We may also refer
here to Wienets Cybemnetics (Wiley, 1948),dealingwith the generalproblerns of communicationand control.

SFor a proof of this theoremand further discussion seethe authors paper Communicationin the Pregnceof Noise” publishedin
the Proceeding®f the Ingitute of Radio Enginees, v. 37,No. 1, Jan, 1949, pp. 10-21.
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In this expansion f(t) isrepregntd as asum of orthogonafuncions ThecoeficientsX, of the various
termscan be consideredas coordinatedn an infinite dimensional‘function space. In this space each
functioncorregpondsto precigly onepointandeachpointto onefunction.

A function canbe considered tdbe substartially limited to atime T if all the ordinaies X, outsidethis
interval of time are zera In this caseall but 2TW of the aordinateswill be zera Thus functions limited to
abandW anddurationT correpondto pointsin aspace of2TW dimensons

A subset of the funcionsof bandW anddurationT correpondsto aregion in this space.For example,
thefuncionswhostotal enegyislessthanor equalto E correpondto pointsin a2TW dimensonalsphere
with radusr = /2WE.

An ersemlbe of functions of limited duration and band will be represenedby a probability distribution
p(xi,...,%n) inthe mrrepondingn dimensional pace If theensemblésnotlimited intimewe canconsider
the 2TW coordnatsin agivenintenal T to repesen substantially the partof the function in theinterval T
and the probability distribution p(x,-..,%n) to give the statisticalstructure of the ersemlbe for intervals of
thatduraton.

20. ENTROPY OFA CONTINUOUS DISTRIBUTION
The entropy of adiscreteset of probabilities pa, ..., pn hasbeendefinedas:
H=-3 pilogp.

In an analogousnannerwe definethe entropy of a cntinuousdistribution with the densty distribution
function p(x) by:

H= —/ p(x) log p(x) dx.
With ann dimersiona distribution p(xy, .. .,X,) we have

H :_/.../p(xl,...,xn)logp(xl,...,xn)dxl.__dm

If we have two argumerts x andy (which may themslves be multidimengonal) the joint and conditional
entopies ofp(x,y) aregivenby

H(xy) = —// p(x,y) log p(x,y) dxdy

and
_ p(X,y)
Hx(y) = // p(x,y)log o0 dxdy
Hy(x) = —// P(X,y) log%dxdy
where

P09 = [ plxy)dy
p(y) = / p(x,y)dx

The entropies ofconinuousdistributionshave mog (but not all) of the propertes of the discrete ca.
In particular we have the following:

1. If xislimited to acertainvolumev in its spacethenH (x) isamaximumandequalto logv when p(x)
iscongant (1/v) in the volume.
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2. With ary two variablesx, y we have
H(xy) <H(X)+H(y)

with equality if (and only if) x andy areindependent.e., p(x,y) = p(X) p(y) (apartpossibly from a
setof points of probability zerg.

3. Consideragereralizedaveragirg operation of the following type:

P = [ aley)pddx

with
[atxyyax= [a(xy)dy=1, axy) >

Thenthe entropy of the averaged distribution p/(y) is equalto or greaterthanthat of the original
distribution p(x).

4. We have

H(xy) = H(X) + Hx(y) = H(y) + Hy(X)

and

Hx(y) < H(y).

5. Let p(x) beaone-dimensonaldistribution. Theformof p(x) givingamaximumentopysubjectto the
condition that the stardard deviation of x befixedato is Gawssian To show this we must maximize

H(9 == [ P09 logp( dx

with
azz/p(x)xzdx and 1=/p(x)dx

asconstraints. This requires,by the calculusof variations, maximizing

[ [=P(x10gp(x) + AP(IX*-+ up()] dx.
The condtion for this is
—1—logp(X) + M+ =0
andconsqueniy (adjuging the condantsto satisfy the cmndraints)

P = e

X2 /252) .
\V2ro

Similarly in n dimensons suppo® the secondordermomens of p(xy, .. .,Xn) arefixed at A;;:

Aij =/---/Xinp(Xl,---;Xn)dxl---an-

Thenthe maximumentropy occurs(by a similar calculation)whenp(x, ..., %) is the n dimensonal
Gaussiandistribution with the secand arder momerts A;;.
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6. Theentropy of aone-dmengonalGausiandistribution whose standarddeviationis o is given by
H(x) =logVv 2reo.
This is calcuatedas follows:

1 (32252
P9 = o

2
—logp(x) = logV/2ro + >
H == [ P00 logp(x) dx
:/p(x) Iog\/ﬂadx+/p(x)

2

=logVv2nro + g
202
= logVv/2ro +logv/e

=logVv2reo.

Similarly the n dimersional Gaussiandistribution with asseiatedquadratic form &; is given by

p(X1,---,%n) = n/zexp( Za”x.xj)
andthe entrofy canbe calculatedas
H = log(2re)"2|a;| 2

wherela;j| is the determinantwhos dementsare &; .

7. If xis limited to ahalf line (p(x) = 0 for x < 0) andthefirst momentof x is fixedat a:

a= / p(x)xdx,
0

thenthe maximumentrofy occurswhen

andis equalto logea

8. Thereis oneimportant difference bateenthe mntiinuousanddiscree entropies In thediscrete cae
the entropy measuredn an abslute way the randomnes of the chancevariable. In the mntinuous
casethe measuremeris relative to the coodinate sysem. If we change coordinatesthe ertropy will
in generachange In factif we changeo coordnaksy; - - -y, the new entropy is givenby

0= [ [ 0a,03(7) logpta,.... )5 -~y

wherel (§) isthe Jacobanof the cordinak trangormaton. On expandngthe logarthm and chang-
ing the variablesto x1 - - - Xy, we obtain;

/ /pxl, X IogJ(y)dxl .d%,.
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Thusthe new entopyistheold entropy lessthe expecedlogarthm of the Jacoban. In theconinuous
ca®theentopycanbeconsdereda measuref randomnesrelativeto an ssumed standaid, namely
the coordinatesystemchosernwith eachsmallvolumeelementdx; - - - dx, given equalweight When

we changehe mordinake systemthe entropy in the new syssemmeasiresthe randomneswhenequal
volumeelementgly; - - - dy;, in the new systemaregivenequalweight.

In spite of this dependencen the coordnatke systemthe entropy conceptis asimpor@ant in the con-

tinuousca® @ thediscrete ca®. Thisis dueto the factthat the derived conceps of information rate

andchannelcapady dependon the differenceof two entropiesandthis differencedoesnot depend
onthecoordinateframe,eachof thetwo termsbeingchangedy the sasmeamount.

Theentropy of a continuousdistribution canbe neaive. Thescale of measiremens sts anarbitrary
zerocorrepondingto auniformdistribution over aunit volume. A distributionwhichis moreconfined
thanthis haslessentropy andwill be ngative. Theratesand capacitieswill, hawever, always benon-
negaive.

9. A particularcas of changng coordnatksisthelineartrangormaton
W:Z%ﬁ
In this casethe Jacobiaris simply thedeterminan{aj|~* and
H(y) = H(x) + log|a;j]-
In the ca® of arotation of coordinaies (or ary measurepresrvingtrangormaion)J =1 andH(y) =
H(x).
21. ENTROPY OF AN ENSEMBLE OF FUNCTIONS

Condderanergodic ensembk of funcionslimited to a cerin bandof width W cycles per econd.Let

P(X1,- .-, %n)

be the dersity distribution function for amgditudes x1, ..., X, at n successie sanple points. We define the
entropy o theengemble perdegreeof freedomby

:—%Lrpon/ /p X1,---,Xn) l0gp(X1, -, Xn) dXq . . . dX.
We may also definean entrogy H per condby dividing, not by n, but by the time T in secondsfor n
sanples. Sincen=2TW, H = 2WH'.

With white thermalnoise p is Gaussiarandwe have

= logv2reN,
H =W log2reN.

For a given averagepower N, white noise hasthe maximum possible entropy. This follows from the
maximizing propertes of the Gaussiandistribution notedabove.

Theentropy for a coninuousstochasic proces hasmary properies analogousto that for discrete pro-
cesseslIn the discretecasethe ertropy wasrelatedto the logarithm of the probability of long sequences
andto the nunber of rea®nabl probabk sequencesf longlength. In the continuousca it isrelakedin
asimilar fashonto the logarithm of the probability densty for alongseries of @mples, andthe vadumeof
reasonabligh probability in the functionspace.

More precisely if we assume p(x,...,X%,) coninuousin all thex; for all n, then for suficiertly largen

logp
n

H/
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for all choices of(x,...,X,) apartfrom a setwhose total probability is lessthand, with § ande arhitrarily
small. Thisfollows form the egodic propery if we divide the spaceinto alarge numberof small cels.

The relation of H to volume can be statedas fdlows: Under the sameassumptions consider the n
dimengonal spacecorreponding to p(xy,...,X%,). Let Vy(q) be the smallestvolume in this spacewhich
includesin its interior a total probability g. Then

Lim logVn(0)

n—oco n

=H

providedq doesnotequalO or 1.

Thesaesultsshaw thatfor largen thereisaratherwell-definedvolume (atleastin the logarithmic serse)
of high probability, and that within this volume the probability density is relatively uniform (again in the
logarithmic serse).

In the white noise cas the distribution funcionis givenby

1 1
p(X1,---,%n) = W exp—m ZX"Z'
Sincethis dependsonly on ¥ x? the surfaces ofequalprobability densityare spheresand the entire distri-
bution has spherical synmetry The region of high probability is a sphere of radus v/nN. Asn — o the
probability of being ouside asphere of radus /n(N + €) approachegeroand % timesthe logarithm of the
volume of the sphereapproachekogy/2meN.

In thecontinuousca it i s convenientto work notwith theentropy H of an ersemlbe but with aderived
quantity which we will call the ertropy power. Thisis defined as the power in a white noiselimited to the
same bandasthe original ensembk and having the sameentropy. In otherwordsif H’ is the entropy of an
ersemlbbe its ertropy power is L

!
N1 = oo exp2H’.
In the geometricapicturethis amountsto measiringthe highprobabilityvolumeby the squaredradiusof a
spherehaving the samevolume. Sincewhite noise hasthe maximumentropy for agiven power, theentropy
power of any noiseislessthanor equalto its acual power.

22. ENTROPY LOSSIN LINEAR FILTERS

Theorem 14: If anensembléaving arentrofy Hy perdegreeof freedomin bandW is pased througha
filter with characteristi¢Y (f) the output enemble hasan entropy

— 1 2
H2_H1+W/Wlog|Y(f)| df.

Theoperation of thefilter isessetmially alineartransformation of coordinates.If wethink of the diff erert
frequeng component as the original coordnate system,the nev frequeny componendg are merel the old
onesmultiplied by factors The coordinatetrangormationmatrix is thuses@ntially diagonalizedn terms
of theee mordinakes. TheJacobanof thetrandormaitonis (for n sineandn cosne componers)

n
I=[IV(F)1
il

wherethe f; areequally spacedthroughthe bandW. This becamesin the limit

1

— [ log|Y(f)[2df.

ep [ logv(Hld

SinceJ is constart its average value is the samequantity and applyingthe theoremonthe change of ertropy

with a change of coordinates,the restt follows. We may alsophraseit i n termsof the entropy paver. Thus
if the entropy power of the first ensemlbe is N; that of the secand is

Nlexpv—t/wlog|Y(f)|2df.
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TABLE |

ENTROPY| ENTROPY
GAIN POWNER |POWERGAIN| IMPULSE RESPONSE
FACTOR |IN DECIBELS
1
1-w ---> 1 sin?(t/2)
& —869 t2/2
0 w 1
1
1-w? --—> 2\4 sint  cost
E (3) —533 z[t_3_t_2}
0 w 1
1
1—wd --—> j cog—1 cogt = sint
0.411 -3.87 6[ v _F+t_3:|
0 w 1
1
V12 --- 242
lowsmm> (%) 267 T h(t)
e 2t
0 w 1
1
|
|
| 1
|
—— —8.6 — [cog1— )t —cost
: e2a S OcTZ[ 5( C\t) ]
~a
0 w 1

The final entropy power is the initial entropy paver multiplied by the geometric meangain of the filter. If
thegainis measuredn db, then the output ertropy powerwill be increasedy the aithmeticmeandb gain
over W.

In Table | the entropy power losshasbeencalculatedandalso expressedn db) for a numberof ideal
gain characerigtics. Theimpulsveregponss oftheefiltersareaso givenfor W = 27, with phaseassuned
to beO.

The entropy loss for mary other casescanbe obfained from the® reailts. For exampk the entropy
power facor 1/€? for thefirst caseaso appliesto any gain characteristiobtainfrom 1 — w by a measure
pregrvingtrangormaton o thew axis. In particulara linearly increasingyain G(w) = w, or a“saw tooth”
characteristibetween0 and 1 have the sameentrofy loss. The reciprocalgain hasthe reciprocalfactor
Thus1/w hasthefacbr €?. Raising the gain to any pawver raisesthe facta to this power.

23. ENTROPY OFA SUM OF TWO ENSEMBLES

If we have two ensembles offunctionsf, (t) andgs(t) we canform anew enemble by “addition” Suppo®
the first ensemie has tte probability density function p(xi,...,%) andthe secondq(xy,...,X,). Thenthe
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dengty functionfor the sumis given by the corvolution:

r(xl,---,xn)=/---/p(yl,---,yn)q(xl—yl,---,xn—yn)dyl---dyn-

Physcaly this correpondsto adding the noises or signak repregnied by the original enembles of func-
tions
Thefollowing resut is derivedin Appendix 6.

Theorem 15: Let theaveragepower of two ensembledeN; andN, andlet their entrogy poversheNy
andN,. Thentheentopy paoverof the sum,Ns, is boundedy

N1+ N2 <Nz < Ni+ N

White Gaussian noise hasthe pecular propery thatit canab®orb any other noise or Sgnal ensembk
which may be added to it with aresutant ertropy power approximatelyequal to the sum of the white noise
power and the signalpower (measiredfrom the average ggnalvalue,whichis normaly zero),providedthe
signalpower issmall,in a certainsensecomparedo noise.

Consider the function spaceasseiatedwith theseensembeshaving n dimensons The white noise
correpondgo thesphericalGausiandistribution in this space.The signalensemblecorregpondgto another
probabilitydistribution, not necessarily{Gaussiaror spherical Let the sscondmomentsof this distribution
aboutits cener of gravity beajj. That is, if p(Xy,...,Xn) is the dersity distribution function

aij :/---/p(Xj—Oéi)(Xj—Olj)Xm---an

wherethe o; arethe coordnates of the centr of gravity. Now & is a postive definite quadraitc form, and
we canrotateour coordinate systemto align it with the principal directions of this form. a;; is thenreduced
to diagonalform by;;. We requirethateachb; be small comparedo N, the squaredradius of the spherccal
distribution.
In this cag theconvolution of thenoise andsignalproduceapproximaiely a Gausiandistributionwhose
correponding quadraitc formis
N + bj.

The entropy pawer of this distribution is
1/n
[MN-+b0)]

or approxmatly

1/n

= [N+ 3 by ()]
1

Thelag termisthesignalpower, while thefirst is the noise power.

PART IV: THE CONTINUOUSCHANNEL

24. THE CAPACITY OF A CONTINUOUS CHANNEL

In a ontinuouschannetheinputor transmitted signalswill becontinuoudunctionsof time f (t) belonging

to a certainset, andthe outputor receved signalswill be perturbedversionsof these. We will consider
only the casewhereboth transmittedand receved signalsarelimited to a certainbandW. They canthen
be specffied, for atime T, by 2T W numbers, and their statisticalstructure by finite dimersional distribution

functions. Thus the statisticsof the trarsmittedsignal will be determiredby

P(x1,...,%) = P(X)
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ard those of the noiseby the condtional probability distribution

PX17~-7Xn (ylv .- 7yn) = PX(y)

Therate of transnisson of informaion for a cmntinuouschanneis definedin a way analogousto that
for adiscrete channelnamey/
R=H(x) — Hy(x)

whereH (x) isthe entropy of theinputandHy(x) the egquivocaion. Thechannelcapadiy C is definedasthe
maximumof Rwhenwe vary theinputover al possible ensembks This meanshatin afinite dimengonal
approxmationwe mug vary P(x) = P(Xy, .. . ,X,) andmaximize

/P ) logP(x) dx+//nyIog )dxdy

//P X,Y) Iog (;) dxdy

usingthefactthat// P(x,y)logP(x) dxdy= /P(x) logP(x) dx. Thechannekapadiy is thusexpresed as
follows:

This canbe written

)
C=LmM P( dxd
e /] Plxylog it axcy

It is obvious in this form that R andC aremdependenof the mordinake system sincethe numeraor
P(x.y)
P(P(Y)
ary one-b-oneway. Thisintegral expresionfor C is moregenerathanH (x) — Hy(x). Properly interpreed
(seeAppendix 7) it will always exist while H (x) — Hy(x) mayassumeanindeterminateform co — o in same
cases.This occurs,for example,if x is limited to a sufaceof fewer dimersions thann in its n dimensonal

approxmaion.

If the logarithmic baseusedin computing H(x) andHy(x) is two then C is the maximum numberof
binary digits that canbe sen per secand ower the chamel with arbitrarily small equivocation, just as in
the discree ca®. This canbe seenphyscaly by dividing the spaceof signak into a large numberof
small cells, sufficiently small so that the probability density Px(y) of signalx being perturbedto pointy is
sibstartially constart over acell (eitherof x ory). If the cellsareconsidered aslistinct pointsthe situatianis
esentially thesameas a discretechannebnd the proofsused therewill apply But it is clearphydcally that
this quantzing d the volumeinto individual pointscannotin ary pracical situation alter the final anaver
significartly, provided the regions aresufficiently small. Thus the capacity will bethelimit of the capacities
for thediscrete subdivisionsandthisisjug theconinuouscapady definedabove.

On the mathemaical sideit canbeshown first (seeAppendk 7) thatif u is the messag, x is the signal,
y is thereceved signal (perturbedy noise)andv is the recoreredmessag then

H(X) — Hy(x) > H(u) — Hy(u)

regardess ofwhat operatonsare performedon u to obtain x or ony to obtain v. Thusno mater how we
encodehe binary digits to obtainthe signal,or how we decodetherecevved signalto recover the message,
the discreteratefor the binary digits doesnot exceedthe channelcapacitywe have defined. @ the other
hand,it is possible undervery generalconditiongto find a codingsystemfor transmitting binary digits atthe
rateC with assmallan equivocation or frequency of errorsasdesired This istrue, for examge, if, when we
take afinite dimensonalapproximaing spacefor thesignalfuncions P(x,y) is coninuousin both x andy
excep at a setof points of probability zera

An important special cag occurswhenthe noise is addedto the signaland is independentf it (in the
probability serse).Then Pi(y) isafunciononly of thedifferencen = (y — x),

Ru(y) = Q(y—x)

ard derominatar in log— = will be multiplied by the samefactas when x andy aretrangormedin
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andwe canassgn a definite entopy to the noise (independentf the statistics of the signal), namely the
entopy o thedistribution Q(n). This entropy will be denotedby H(n).

Theorem 16: If thesignalandnoiseareindependerdandthereceved signalisthesumof thetransmitted
signalandthe noise thenthe rate of transnissonis
R=H(y) —H(n),
i.e.,theentropy of thereceved signal lessthe entrofy of the noise. Thechannekapacityis

C= I\F/)I(%XH(y) —H(n).

We have, sincey = X+ n:
H(x,y) = H(x,n).

Expandngtheleft sde andusng thefactthatx andn areindependent
H(y) + Hy(X) = H(X) + H(n).

Herce
R=H(X) —Hy(x) =H(y) —H(n).

SinceH (n) isindependentf P(x), maximizing R requiresmaximizing H(y), theentropy of thereceved
signal. If thereare certainconstraintoon the ensembleof transmittedsignals, the entrogy of the receved
signalmug be maximizedsubjectto thee mndraints

25. CHANNEL CAPACITY WITH AN AVERAGE POWER LIMITATION

A simple gplication of Theorem16 is the casewhen the noiseis a white thermalnoiseand the trarsmitted
signals arelimited to a certainaverag power P. Thenthereceved signalshave an averagepowver P+ N

whereN is the averagenoisepower. The maximumentropy for thereceved signalsoccurswhenthey also
form awhite noise enemble sincethisisthegreaed possible entropy for apower P+ N andcanbeobtained
by a suitable choice of transmittedsignals, namelyif they form a white noise ersembbe of power P. The
entropy (per £cond)of thereceved ensembleisthen

H(y) = Wlog 2re(P+ N),

andthenoise entopyis
H(n) =Wlog2reN.

Thechannelcapadiy is
C=H(y)—H(n) :wmgPEN.

Summarizirg we have the following:

Theorem 17: Thecapacity ofa channelof bandW perturbedby white thermalnoise powver N whenthe
average transnitter power islimited to P is given by

P+N

C=WIlog N

This meansthat by sufficiently involved encding systemswe cantrarsmit binary digits at the rate
P+N

Wlog, bits per £cond,with arbitrarily small frequeng of errors It is not possible to transnit at a

higherrate by any encoding systemwithouta definite postive frequeng of errors
To approximatethis limitin g rateof trangnissian the transnitted signals must approximate,in statistical
propertes, a white noise.® A systemwhich approacheshe idealrate may be described agollows: Let

6This and other propertiesof the white noise cas ae discussed from the geonretrical point of view in “Communicationin the
Preseenceof Noise;’ loc. cit.
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M = 2% samplef white noisebe constructeadachof durationT. The® areassgnedbinary numbersrom
0 to M — 1. At thetransnitter the mesage sequencesare broken up into groupsof s andfor eachgroup
the correpondingnoise sampleis transnitted as the signal. At therecever the M sampesare known and
the actualreceved signal (perturbedoy noise)is comparedwith eachof them. The samplewhich hasthe
leag R.M.S.discrepang from thereceved signalis chosnasthetransnittedsignal and the correponding
binary numberreconsructed. This proces amouns to choosng the mog probabé (a pogeriori) signal
ThenumberM of noisesampesusedwill depend onthe tolerable frequency e of errors but for aimog all

selecionsof samples we have

.. logM(e,T) P+N
LimLim ————~> =Wlog———
el—)n(} Tl—)ngo T 9 N’

sothat no matterhow smalle is chosenwe can,by taking T sufficiently large, transmitas near agve wish

P+N
to TWlog E

Formulas similar to C = Wlog P for the white noise ca® have beendevelopedindependety

by several otherwriters, athoughwith somewhat differentinterpretations We may mentionthe work of
N. Wienetr’ W. G. Tuller,2 andH. Sullivan in this connecion.

In the caseof an arbitrary perturbing nase (rot necessarilywhite thermalnoise)it does naot appearthat
the maximizing probleminvolvedin determining the chamel capacity C canbe sdvedexplicitly. However,
upperand lower boundscanbeset for C in termsof theaveragenoise power N the noise entropy pover Nj.
Thes boundsaresufiiciently close togeterin mog practcal casego furnish a satisfacory soluionto the
problem.

Theorem 18: The capacity ofa channelof bandW perurbedby an arbitrary noise is boundedy the
inequalities

binary digitsin thetimeT.
+N

P+ Ny P+N
<C<Wilo
Nt — — g Ny

Wlog
where

P = averag transnitter power
N = averagenoise power
N1 = entopy paver of the noise.

Here again the average power of the perturbed signals will be P+ N. The maximum entropy for this
power would occur if the receved signal werewhite noiseandwould be Wlog2re(P + N). It may not
be posside to acheve this; i.e.,theremay not be ary ensembe of trangnitted signals which, added to the
perturbingnoise, produceawhite thermalnoise attherecever, but at leas this setsan upperboundto H (y).
We have, therefore

C = MaxH(y) —H(n)
<WIlog2re(P+ N) —Wlog2reN;.

This is the upperlimit given in thetheorem.Thelower limit canbe obtainedby consdering therate if we
male the transnitted signal a white noise,of power P. In this casetheentrogy power of thereceved signal
mustbe at leastas greatasthat of a white noiseof power P+ N; sincewe have shown in in a previous
theoremthat the entropy pawver of the sum oftwo ensembksis greaer than or equalto the sum of the
individualentropy powers. Hence

MaxH (y) > Wlog2re(P+ Ny)
"Cybenmetics loc. cit.

8T heoreticalL imitations on the Rate of Transnisson of Information? Proceedingsof the Ingitute of Radio Enginees, v. 37,
No. 5, May, 1949, pp. 468—78.
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and

C > WIlog2re(P+ N;) —Wlog2reN

P+N
=Wlog -'N- =
1

As P increags theupperand lower boundsapproacteachother so we have asanas/mptoticrate

P+N

Wlog N
1

If the noiseis itself white, N = N; andthereallt reducego the formulaproved previoudy:

C=WIog(1+ ;)

If the noiseis Gaussiarbut with a spectrumwhich is not necessarilfflat, N; is the geametric meanof
the noise power over thevariousfrequencésin thebandW. Thus

Ny = expviv/wlogN(f)df

whereN(f) isthe noise power at frequeng f.
Theorem 19: If we setthe capacity for a given transnitter powerP equalto

P+N-—n¢

C=Wlog N
1

thenn is monobnic decreag asP increasesndapproache$ as alimit.
Suppo®thatfor agivenpower Py the channel capacity is

Pi+N—m

Wlog N
1

This meansthat the beg signal distribution, say p(x), whenaddedto the noise distribution q(x), givesa
receved distributionr(y) whos entropy power is (P. + N —n3). Letusincreasehepowerto P; + AP by
adding awhite noise of power AP to thesignal. Theentropy of thereceved signalis now atleast

H(y) =WIlog2re(PL+ N —n1 + AP)

by application of the theaem on the minimum entropy power of a sum. Herce, since we canattainthe
H indicated the entroyy of the maximizingdistribution mustbe & leastas greatandn mug be monobnic
decreasingTo shav thaty — 0 as P — o consider a signa which is white noisewith alarge P. Whatever
theperturbingnoise thereceved signalwill beapproximatelyawhite noise,if P is suficiertly large,in the
sense of having an entropy power approaching P+ N.

26. THE CHANNEL CAPACITY WITH A PEAK POWER LIMITATION

In sameapplications thetransnitterislimited not by the average poweroutput but by the peakinstartaneous
power. The problemof calculatingthe channelcapacityis thenthat of maximizing (by variationof the
ersemlbe of trarsmittedsymbals)

H(y) —H(n)

subjectto the congraint that al thefunctions f(t) in the ensembk be lessthanor equalto /S, say, for all
t. A constraint of this type does not work out aswell mathematicallyas tte average power limitation. The

mog we have obtainedfor this cag is alower bound \aid for all E an “asymptotc” upperbound(valid

for large %) and anasymptoic value of C for E small.
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Theorem 20: The channelcapaciy C for a bandW perturbedby white thermal noise of power N is
boundeaby
S

2
>Wlog—; —
C= Og7r(—:3N’

whereS is the peakallowedtrangnitter power. For sufficiertly large E

2
<S+N
C gWIog%(l+e)

wheree is artitrarily small. As E — 0 (andprovidedthe bandW startsat0)

C/Wlog(1+§) -1

We wish to maximizethe entroyy of thereceved signal. If N is large thiswill occur very nearlywhen

we maximizethe entropy of the transnittedensemHe.

Theasymptoticupperboundis obtaineddy relaxingtheconditionsontheensemble.Let us sippo® that
the power islimited to Snotateveryingant of time, but only at the sample points Themaximumentopy o
thetrangnittedensembleunderthes wealenedconditionds certainlygreateithanor equalto thatunderthe
original condtions Thisateredproblemcanbesolvedeadly. Themaximumentropy occursif the different
samples areindependerandhave adistributionfuncionwhichis congant from —v/Sto ++/S Theentopy
canbecalculatedss

Wlog4s

Thereceved signalwill thenhave anentropy lessthan

Wlog(4S+ 2reN)(1+¢)

with e — 0 &8 E — oo andthe channelkcapadiy is obtainedby subtracing the entropy o thewhite noise,

Wlog2reN:
2

“<S+N
Wlog(4S+ 2reN)(1+ €) — Wlog(2reN) =W log % (1+e€).

Thisis the desredupperboundto the channelcapaciy.

To obtain alower boundcongderthe sameensembk of funcions Letthes funcionsbe pased through
anidealfilter with atriangulartranger characterisc. The gainis to be unity at frequeng 0 anddecline
linearly down to gain O at frequency W. We first shaw thatthe outputfunctionsof the filter have apeak

L . . . ) sin2
power limitation Sat al times(notjust the sampk points). First we note thata pulse

Sin2mWi oinginto
_ 2rwt 909
the filter produces

1sirf7Wt

2 (mWt)2
in the output Thisfuncionis never negaive. Theinputfunction (in the generalca®) canbethoughtof as

the sum ofa series of shiftedfunctions )
sin2rWt

27Wt

wherea, theampitudeof the sampk,isnotgreaerthan+/S. Hencethe outputisthe sum of $ifted funcions
of thenon-ngative form above with the samecoefficients Thes functionsbeingnon-ngative, thegreates
positive value for ary t is obtainedwhenall the wefliciens a have their maximum positive values,i.e.,v/S.

In this case theinputfunctionwasa mngantof amplitudey/Sard sincethe filter hasunit gainfor D.C.,the

outputis the same.Hencethe output enesmble hasa peakpower S.
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The entropy of the output ensmble can be calculated from that of the input ensemble by usng the
theorendealingwith such a situation.The outputentrofy is equalto theinputentrofy plusthegeometrical

meangain of thefilter:
W W W—f\2
logG? f:/ log( =1} gt = —aw.
/o 0ogG-“d A og( W ) d

WIog4S—2\N:WIog§’

Hencetheoutputentopyis

andthechannekapacityis greaterthan
Wiog2. 3
g meSN’

We now wishto show that, for small % (peaksignalpowerover averagewhite noise power), the channel
capacity is approximately

S
C_Wlog<1+ N)'

More preciserC/WIog <1+ %) —1as % — 0. Sincethe average gynalpower P is lessthanor equal

. S
to the peaks, it follows that for all N

P S
C gWIog<1+ N) gWIog<1+ N)'

Thereforejf we canfindan ensembk of funcionssuchthatthey correpondto arate nearly Wlog( 1+ E

ard are limited to band W andpeakS the resut will be proved. Consider the ensemHe of functions of the

following type. A seriesof t sampeshave the samevalue, either +1/Sor —/S, thenthe nett sanpleshave

the samevalue,etc. Thevalue for a seriesis choenat random probability % for +v/S and% for —/S If

this enemble be pased througha filter with triangulargain characterigc (unit gainat D.C.), the outputis

peaklimited to £S. Furthermaethe average poweris nearly Sandcanbe madeto approactihisby takingt

sufficienty large. Theentropy of the sum ofthis andthethermalnoise canbefoundby applingthetheorem
onthe sum of anoiseand asmallsignal. This theaemwill apply if

S
IS

. - . .S .
is sufficiently small. This canbe ensuredy taking N small enough(aftert is cho®n). Theentropy power
will be S+ N to asclose an approximaionas dedred,and hencetherate of transnissonas near ag/e wish

to SiN
+
Wlog(T).

PART V: THE RATE FOR A CONTINUOUSSOURCE

27. FIDELITY EVALUATION FUNCTIONS

In the case of a discrete sourceof informaion we were able to determine a definite rate of generaing
informaion,name} the entropy of the underlingstochasic proces. With a continuoussourcethe situation
is congderablymoreinvolved. In the first placea mntinuoudy variable quantity canassime an infinite
numberof valuesand requres therefore,aninfinite numberof binary digits for exact pecificaion. This
meanghatto transnit the outputof a continuoussourcewith exactrecoveryatthereceving pointrequires,
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in general a channelof infinite capadiy (in bits per €cond). Since, ordinariy, channe$ have acertin
amountof noise, andthereforeafinite capady, exacttransnissonisimpossible.

This, however, evades the realissie. Practically we ae not interestedn exacttrarsmission whenwe
have a ontinuoussource,but only in transnission to within a certaintolerance.The quesion is, canwe
assgn a definiterateto a continuoussourcewhenwe requireonly a certainfidelity of recovery, measiredin
asuitable way. Of course,as the fidelity requiremens are increasedhe ratewill increaselt will be shown
thatwe can,in very generalcasesgdefine sucha rate, havingthe propertythatit is possible by properly
encodng the informaton, to transmit it over a channelwhose capadiy is equalto therate in quesion, and
satisfythe fidelity requiremerts. A channel of smallercapacity is insuficient.

It is first necessaryo give agereral matrematicalformulation of the ideaof fidelity of transmissian.
Condder the set of mesagesof a longduraton, say T seconds The sourceis desribed by giving the
probabilitydensity in theassociatedpacethatthesourcewill selecthemessagén questiorP(x). A given
communicatiorsystemis de<ribed(from the externalpoint of view) by giving the conditionalprobability
P«(y) thatif messagx is producedy the sourcetherecoveredmessageatthereceving pointwill bey. The
systemasawhale (includingsaurceand transnissian system)is descritedby the probability function P(x,y)
of having mesage x andfinal outputy. If thisfunction is known, the completecharacteristicef the system
from the point of view of fidelity areknown. Any evaluationof fidelity mug correpondmathematically
to anoperation applied to P(x,y). This operaton mug at leas have the propertes of a simple ordering of
systems i.e.,it must be possibleto say of two systemsrepregnied byP;(x,y) andP,(x,y) that,accordingo
our fidelity criterion, either (1) thefirst has higher fidelity, (2) the secand has higher fidelity, or (3) they have
equal fidelity. Thismearsthat acriterion of fidelity canbe represenedby a numerically valuedfunction:

V(P(x,y))

whose agumert ranges over possilie probability functionsP(x,y).

We will nhow show thatundervery generaland rea@nableas&mptionsthefunctionv(P(x, y)) canbe
writtenin a seemimgly much more specializedform, namelyas an average of a function p(x,y) over the se
of possible valuesof x andy:

v(PO) = [[ POcy)pixy) dxdy

To obtain this we needonly assume (1) thatthe sourceandsystem are egodic so thata very long sample
will be, with probability nearly1, typical of the ensemHe, ard (2) thatthe evaluation is “reasmable” in the
sense thatit is possible, by observing a typical inputandoutputx; andy;, to form atertative evaluation
on the basisof these ampges;and if these amgesareincreased induration the tertative evaluation will,
with probability 1, approachthe exact evaluation basedon a full knowledge of P(x,y). Let the tertative
evaluation be p(x,y). Thenthefunction p(x,y) approache@sT — «) acongantfor amog al (x,y) which
arein the highprobabilityregion correpondingto the system:

p(x,y) = V(P(x,y))
andwe may alsowrite

p(%.y) = / / P(x,y)p(x,y) dxdy

// P(x,y)dxdy= 1.
This estaltishes the desiredrestt.

Thefuncionp(x,y) hasthegenerahatureof a“distance”betwveenx andy.® It measireshow undesrable
it is (accordingto our fidelity criterion)to recevey whenx is trarsmitted The gereralrestut given abowve
canberestateasfollows: Any reasonablevauationcanberepresenteds an average ofadistanceunction
overthe setof messags and recoveed messags x andy weightedaccordingto the probability P(x,y) of
getting the pair in question, providedthe duration T of the messagebe takensufficiently large.

Thefollowing are simpe examgesof evaluation functions:

since

91t is nota “metric” in thestrict sense, hawever, sincein generalit doesnotsatisfy eitherp(x,y) = p(¥; X) or p(x,Y) +p(¥,2) > p(X,2).
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1. R.M.S. criterion.
2

v=(x(t) — y(t))".
In this very commanly usedmeasue of fidelity the distarcefunction p(x,y) is (apartfrom a congant
factor) the squareof the ordinary Euclideandistancebetveenthe points x andy in the associated
functionspace.

o) = [ [x) - yo) e

2. Frequeng weightedR.M.S. criterion. More generdly onecanapply differentweightsto thedifferent
frequengy componentdbeforeusinganR.M.S. measire of fidelity. Thisis equivalentto pasing the
differencex(t) — y(t) througha shaphgfilter and then dermining the averagepower in the output
Thuslet

and -
f(t) = /_ _e(k(t—r)dr
then 1T
pixy) =7 [ 02at

3. Absduteerra criterion. LT
py) =7 [ [x® -yt
0

4. Thestructureof theeararnd braindetermineimplicitly anevaluation, or ratheranumber of evaluations,
appropriate inthe caseof speechor musictransmission.Thereis, for example,an “intelligibility”
criterion in which p(x,y) is equalto the relative frequeny of incorrecly interpreied words when
messa@ x(t) is receved asy(t). Althoughwe cannotgive anexplicit repregnttion o p(x,y) in these
casest could, in principle, bedeterminedby sufficientexperimenation. Someof its properiesfollow
fromwell-known experimental resuts in hearirg, e.g, the earis relatively insersitive to phaseand the
sendtivity to ampitude andrequeng isroughly logarthmic.

5. Thediscretecasecanbe considered as specialization in whichwe havetacitly assumedan evaluation
ba®d onthefrequeng of errors Thefuncton p(x,y) isthendefinedasthe numberof symbolsin the
sequencey differing from the correponding symbolsin x dividedby the total numberof symbolsin
X.

28. THE RATE FOR A SOURCE RELATIVE TO A FIDELITY EVALUATION

We arenow in a postion to definea rateof generatingnformationfor a antinuoussource. We aregiven
P(x) for the sourceandan evaluationv determired by a distarce function p(x,y) which will be assuned
coninuousin both x andy. With a particdar systemP(x, y) the quality is measuedby

v= //p(x,y)P(x,y)dxdy

Furthermoretherate of flow of binary digits correpondingto P(x,y) is
P(x,y)
R= / / P(x,y)lo dxd
(x,y)log PP(y) X

We definetherate Ry of generating information for a givenquality vi of reproducionto be the minimumof
Rwhenwe keepv fixedatv, andvary Px(y). Thatis:

— M P(x.y)
Ry = IF\lﬁl&//P(x,y) log POOP(Y) dxdy
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subjectto the congraint:

vy = / / P(X,Y)p(x,y) dxdy

This meansthat we mndder, in effect al the cmommuntaion systems that might be usedand that
transmitwith the requiredfidelity. The rate of transmissiorin bits per £condis calculatedfor eachone
andwe choo< thathaving theleag rate. This latter rateis the ratewe ass$gn the sourcefor thefidelity in
qguesion.

Thejustification of this definition liesin the following resut:

Theorem 21: If asourcehasarateR; for avaluation v it is possible to encodethe outputof the source
andtransmitit over a channebf capacityC with fidelity asnearv, asdesredprovidedR; < C. Thisis not
possibleif Ry > C.

Thelaststatemennin the theoremfollowsimmedatelyfrom the definition of R; andpreviousreallts. If
it were not true we could transmit morethanC bits per condover a channelof capacityC. Thefirst part
of thetheoremis proved by a methodanalogougo thatusedfor Theoreml11. We may; in thefirst place,
dividethe (x,y) space intoalarge number of small cellsard represen the situation as a discretecase.This
will not changethe evaluationfunctionby morethanan arbitrarily small amount(whenthe cellsarevery
small) becausef the continuity assumedor p(x,y). Suppo® thatP;(x,y) is the particuar systemwhich
minimizesthe rate and gives R;. We choos from the highprobabilityy's a set atrandomcontining

2(Ru+e)T

membersvheree — 0 as T — . With large T eachchoenpointwill be connectedy a high probability
line (as inFig. 10) to asetof x's. A calcuation similar to that usedin proving Thearem 11 shows that with
large T almostall x's arecoveredby thefansfrom the choeny pointsfor almod all choices ofthey’s. The
communcaion system to be used operaes as follows: The selecied points are assgnedbinary numbers
When a message is originatedit will (with probability approaching 1 asT — ) lie within at leastone
of thefans Thecorrepondingbinary numbeis transnitted (or oneof themchosnarbitrarily if thereare
several) over the chamel by suitable coding meango give asmallprobability of errar. SinceR; < C this is
possible. At thereceving pointthe corregpondingy isreconsructed and usedasthe recoveredmessge.

The evaluation V) for this gystem canbe madearbitrarily close to v, by taking T suficiently large.
Thisis dueto thefactthatfor eachlong sampleof message(t) andrecoreredmessagey(t) the evaluation
approachesw; (with probability 1).

It is interestiry to naethat, in this system,the noise in tre recoveredmessag is actaly producedby a
kind of generaljuantizingat thetransnitter and not producedy thenoissin thechannel.lt is moreor less
anabgousto the quantzing noisein PCM.

29. THE CALCULATION OF RATES

The definition of the rate issimilarin mary resgectsto the definition of channel capacity. In the former

X,y)
R= Mln/ P(x,y)lo dxd
Moy /. POy o9 B piyy XY

with P(x) andvy :/ P(x,¥)p(x,y)dxdyfixed Inthe latter

C= Max/ nylog ())dxdy

with P(y) fixedandpossibly oneor moreothercondraints (e.g.,an averagepower limitation) of the form

K= [/ P(X,y)A(xy) dxdy
A partia soluion o thegeneramaximizing problemfor determining the rate of a sourcecanbegiven.
Using Lagranges methodwe consder

[ [Pocton ot + Pxy)ot) + PG| dxcly
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The variational equation (whenwe take the firstvariation onP(x,y)) leadsto
Ry(x) = B(x)e A7)

where) is determiredto give the requiredfidelity and B(x) is chosento satisfy
/ B(x)e™ Y dx = 1.

This shows that, with beg encodingthe conditionalprobability of a certaincaus for variousreceved
y, RBy(x) will declineexponentiallywith thedistancefunctionp(x,y) betweenthe x andy in quesion.

In the specialcasewherethe distarcefunction p(x,y) depend®nly onthe (vector)differencebetweenx
andy,

p(X%;Y) = p(x—y)
we have
/ B(x)e Y dx= 1.
HerceB(x) is congant, say «, and
Py(X) = ag PO,

Unfortunately theseformal solutions aredifficult to evaluatein particuarcasesand seemto be of little value.
In fact,theactualcalculationof rateshasbeencarriedoutin only a few very Smple cases.

If thedistarcefunction p(x,y) isthemeansquarediscrepang betweenx andy and the messag ensenble
is white noise,the ratecanbe determired In that casewe have

R=Min[H(x) — Hy(x)] = H(x) — MaxHy(x)

with N = (x—y)2. But the MaxHy(x) occurswheny — x isawhite noise, andis equalto Wy log 2reN where
W, is the bandwidth of the messag ensembbe. Therefore

R=Wlog2reQ— W log2reN
=W Iog%
whereQ is the average messag power. This provesthe following:

Theorem 22: Therate for a white noise sourceof power Q andbandW relative to anR.M.S. measute
of fidelity is
Q

N
whereN is the dlowedmeansquare erra betweeroriginal and recoreredmessags.

More generallywith any messge sourcewe canobtaininequalitiesooundingtheraterelative to amean
squareerrorcriterion.

Theorem 23: Therate for ary sourceof bandW, is boundecy

& Q
N N

R=Wilog

W, log <R<Wlog

whereQ isthe aseragepower of the source, Q1 its entropy power andN the dlowedmeansquare erra.

Thelower boundfollows from thefactthat the MaxHy(x) for agiven (x—y)? = N occusin the white
noise cae. Theupperboundreslltsif we placepoints(usedin the proof of Theoren®1) notin the bed way
but at randomin a sphereof radius,/Q — N.
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APPENDIX5

Let S; be ary measurablesubsetof the g ensembleand S, the sub<et of the f ersemlbe which givesS;
undertheoperatonT. Then
S=TS.
Let H* be the operatar which slifts all functions ina setby thetime A. Then
HAS =H*TS =TH*S
sinceT is invariant and therefae commueswith HA. Henceif m[S] is the probability measue of the setS
MHAS ]| = MTHAS] = mH*S,)]
=mS] =mS]

where the secand equdlity is by definition of measue in the g space the third sincethe f ersemle is
statiary, and the lastby definition of g measireagain.

To prove that the ergodic propery is preserved underinvariant operatons let S be a subset of the g
engmblewhich isinvariantunderH?*, andlet S, bethe setof all funcionsf which transfaminto S;. Then

HAS =H TS =TH S =S
sothatH*S; isincluded in S, for al A. Now, since
mHAS] = m(sy]

this implies
HAS =S
for al A with m[S;] # 0,1. This contradictionshowsthatS; doesnotexist.

APPENDIX 6

Theupperbound,N3 < N; + N, is dueto the factthat the maximum possible entropy for apower Ny + N,
occuswhenwe have awhite noiseof this power. In this casethe ertropy power isN;g + Np.

To obtain the lower bound, suppo® we have two distributionsin n dimensons p(x;) andq(x) with
entropy powersN; andN,. Whatform should p andq have to minimize the entropy power N3 of their
convolutionr (x):

() = [ PR — ) dyi
Theentropy Hz of r is given by

H3:—/r(xi)logr(x.-)d>q.
We wish to minimize this subjectto the constraints
H = —/p(Xi)log p(x;) dx

Hz = [ a(x)loga(x) dx.
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We consideithen
U = [ [r(10gr(x) + Xp(x) log p(x) + ug()loga(x)] dx
oU=— / [[1+logr (x)]8r (X) + A[L+ log p(x)]p(X) + p[1+ loga(x)]dq(x)] dx
If p(x) is varied at a particularagumentx;, = s, the variation in r(x) is

ar(x) =q(xi —s)

and
= —/Q(Xa—s)logr(m)dn—/\Iogp(s) =0

ard similarly when g is varied. Hencethe conditionsfor aminimumare
/q(m —s)logr(x) dx = —Xlogp(s)
[ P =3)logr (x) dx = —ploga(s)-
If we multiply thefirstby p(s) andthesecondby q(s) and integratewith respectto s we obtain

Ha = —AH;
Hz = —puH2

or sdving for A andy andreplacingin the equatons
Hl/q s)logr(x)dx = —Hslogp(s)
Hz/p X —s)logr(x)dx = —Hszlogq(s).

Now suppo® p(X;) andq(x) arenormal

. |Aq i e
B:: n/2
Q(Xi):l IJ|n/2 =3 Y Bijxx;.

Thenr(x;) will alsobe normalwith quedraticform G;j. If theinversesof theseformsarea;j, bij, ¢ij then
Gij = ajj + bij.

We wish to show that these functions satisfy the minimizing condtionsif and only if aj = Kbj; andthus
give the minimum Hz underthecongraints First we have

logr (%) = |09 |CIJ| 3 Y Gijxix;
[ atx =s)logr(x)dx = Slog -Gy |~ 1 3 Gjss — 3 3 Cib;.

This should equal
Hsz[n
o |2 |A41| 2> ASS)

H . : -
—18i j and bath equations rediceto identities.

. . H :
which requiresA;j = H_lcij. In this caseAy =
3 2
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APPENDIX7

Thefollowing will indicatea more general and more rigorousapproachto the certral definitions of commu
nication theory. Considera probability measue spacewhose demerisare orderedpairs(x,y). Thevariables
X, y areto beidentifiedasthe possibleransmittedand receved signals ofsomelong durationT. Letuscall
the set of all pointswhos x belongsto asubstS; of x pointsthestrip over S, and similarly the set whos
y belongto S the strip over S. We divide x andy into a allecion o non-overlapphgmeasirabke subsets
X; andY; approxmatto the rate of trangnisson R by

TZPX.Y )log -~

where

P(X;) is the probability measue of the strip over X
P(Yi) is the probability measue of the strip over Y;
P(X,Y;) isthe probability measue of theintersectim of the strips.

A furthersubdiision cannever decreae R;. For let X; bedividedinto X; = X{ + X{' andlet

P(Y1))=a P(X1) =b+c
P(X) = P(X,Y1) =d
P(X{) =c P(X{,\1) =e

P(X1,Y1) =d+e.
Thenin thesumwe have replacedfor the X1, Y; intersectia)

d+e
a(b+c)

It is easilyshown that with the limitation we haveonb, c, d, e,

d e
(d+e)log——— by dIoga—b+eIog§:.

d+e d+e<dd—ee
b+c = bdce

and conequentlythe sumis increagd. Thusthe variouspossible subdiisionsform a directedset, with
R monotonicincreasg with refinemenif the subdiision. We may defineR unambguousy asthe leas
upperboundfor Ry and write it

XY)
=7 /nylog ()dxdy

Thisintegral, undersoodin the above sense,includesboth the coninuousanddiscreie casesandof course
mary otherswhich cannotbe repregntd in either form. It istrivial in this formulatonthatif x andu are
in one-b-onecorrepondencethe rate from u to y is equalto thatfrom x to y. If vis ary function of y (not
necessarilywith aninverse)thenthe rate fran x to y is greaer than or equalto thatfrom x to v since,in
the calculation o the approximations the subdiisionsof y areesentialy afiner aibdivision of those for
v. Moregenerallyif y andv arerelatednat functionally but statistically; i.e.,we have aprobability measue
spacd(y, V), then R(x,v) < R(x,y). Thismeanshatany operatioreppliedto thereceved signal,eventhough
it involvesstatisticalelementsgdoesnotincreaser.

Another notion which should be defined precisely in an abdract formulation o the theory s that of
“dimensonrate,” thatis the averagenumberof dimengonsrequired per secondto specify a memberof
an ersembbe. In the band limited case2W numbers per secand are sufficient. A general definition canbe
framedas follows. Let f,(t) be anengmble of funcionsandlet pt[f4 (1), f5(t)] be a metric measuring
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the“distance”from f, to fz over thetime T (for example theR.M.S. discrepang over thisintenel.) Let
N(e,d,T) bethe leas numberof elemens f which canbe chosen suclthatall elementsof the ensemble
apartfrom asetof measure) arewithin the distarcee of atleas oneof those chosen. Thuswe arecovering
the space towithin e apartfrom a setof small measureé. We define the dimension rate A for theenemble
by thetriple limit

A =Lim Lim Lim IogN(e,5,T)

60 e»0T—w  Tloge

Thisis a generalizatiorof the measiretype definitionsof dimenson in topology and agreeswith theintu-
itive dimersion ratefor simpe ersembtieswhere the desiredrestt is obvious.
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